
Windows	Scripts	
Batch	vs	PowerShell	
PowerShell	scripts	are	newer	and	offer	greater	functionality	than	traditional	batch	files.		PowerShell	also	
has	a	development	environment	(PowerShell	ISE),	which	makes	writing	and	testing	scripts	easier:	

https://msdn.microsoft.com/en-us/powershell/scripting/core-powershell/ise/introducing-the-windows-
powershell-ise	

We	still	use	batch	files	when	calling	them	from	Max,	since	calling	PowerShell	scripts	requires	a	number	
of	untested	work-arounds.	

Startup	Scripts	
On	each	of	our	exhibits,	Task	Scheduler	is	set	up	to	start	a	process	at	logon.		On	a	machine	that	runs	only	
one	application,	that	application	itself	can	be	the	startup	process.		With	the	transition	to	Windows	10,	a	
startup	script	is	probably	going	to	be	the	preferred	option,	even	when	simply	launching	one	application,	
because	scripting	allows	us	to	deal	with	the	Taskbar-in-front	problem.	

Here	is	a	canonical	startup	script.		It	launches	two	programs	(CoolSynthCV	and	CoolSynth)	and	ensures	
that	the	second	one	is	full-screen:	

#allow five seconds for user to cancel script	
"Cool Synth starting up in five seconds. Close this window to cancel..."	
Start-Sleep -s 1	
"4..."	
Start-Sleep -s 1	
"3..."	
Start-Sleep -s 1	
"2..."	
Start-Sleep -s 1	
"1..."	
Start-Sleep -s 1	
""	
"Please wait, Cool Synth startup in progress, this window will close when finished."	
	
#run the Cool Synth CV application	
Start-Process -FilePath "D:\dev\CoolSynthCV\CoolSynthCV.exe"	
$CV = Get-Process CoolSynthCV	
$CV.ProcessorAffinity = 192	
	
#pause while CV app starts	
Start-Sleep -s 30	
#make CV app active to clear taskbar notification	
Set-WindowActive -Window $CV.MainWindowHandle	
Start-Sleep 2	
	

#run the CoolSynth application	
Start-Process -FilePath "D:dev\CoolSynth\CoolSynth.exe"	
$RR = Get-Process CoolSynth	
$RR.ProcessorAffinity = 63	
	
#take focus, minimize and then maximize RR to prevent anything from showing in front of it	
Start-Sleep 4	
Set-WindowActive -Window $RR.MainWindowHandle	
Start-Sleep 2	
Set-WindowPosition -Minimize -Window $RR.MainWindowHandle	
Start-Sleep 2	
Set-WindowPosition -Maximize -Window $RR.MainWindowHandle
	

The	above	was	included	as	text,	so	that	it	can	be	copy/pasted.	

	

	 	

Now	Let's	look	at	each	section	of	the	script.	

#allow five seconds for user to cancel script
"CoolSynth starting up in five seconds. Close this window to cancel..."
	

Lines	preceded	by	#	are	comments,	use	them	to	remind	your	future	self	of	what	the	script	is	doing.		The	
second	line	prints	a	message,	telling	the	user	what	is	about	to	happen.		In	PowerShell,	just	place	
something	in	quotes	and	it	will	be	written	to	the	standard	output.	

Start-Sleep -s 1	
"4..."	
Start-Sleep -s 1	
"3..."	
Start-Sleep -s 1	
"2..."	
Start-Sleep -s 1	
"1..."	
Start-Sleep -s 1	
""
"Please wait, CoolSynth startup in progress, this window will close when finished."	
	

Above	you	see	the	command	Start-Sleep,	which	takes	the	parameter	–s	and	causes	the	thread	to	sleep	
for	the	specified	number	of	seconds.		In	this	case	it	sleeps	for	one	second	at	a	time,	counting	down	five	
seconds	and	writing	to	console	so	that	the	user	can	see	the	countdown.		Another	message	follows,	
informing	the	user	that	application	startup	has	begun.	

Start-Process -FilePath "D:\CoolSynthCV.exe"	
	

Start-Process	takes	a	–FilePath	argument	to	an	executable	to	start.		In	this	case,	the	CoolSynthCV.exe	
application	is	being	launched.	

$CV = Get-Process CoolSynthCV	
	

In	PowerShell,	symbols	that	begin	with	$	are	variables.		This	line	uses	the	Get-Process	command	to	
return	the	Process	ID	for	the	newly	launched	CoolSynthCV	application,	and	stores	it	in	the	variable	$CV.		
A	process	ID	is	the	number	the	Windows	scheduler	actually	uses	to	identify	processes	running	on	the	
computer.	

$CV.ProcessorAffinity = 192	
	

This	command	sets	the	Processor	Affinity	for	the	CoolSynthCVPID	stored	in	$CV.		Processor	Affinity	
describes	which	logical	cores	(real	or	virtual)	a	process	runs	on.		In	the	case	of	CoolSynth	we	are	going	to	
be	launching	two	applications	which	have	been	demonstrated	to	perform	better	when	manually	
assigned	to	different	physical	processor	cores.		The	assignment	is	a	bitmask,	the	length	of	which	
depends	upon	how	many	cores	the	CPU	has.		In	the	case	of	CoolSynth,	which	runs	on	a	four	core	CPU	
with	Hyper-Threading	(two	logical	cores	per	physical	core),	this	makes	for	8	logical	cores.			
	 	

Here	is	a	breakdown	of	how	the	mask	works:	
	

Processor	Affinity	Bitmask	Table:	(8	Core	Processor)	
Core	#	=	Value	=	BitMask	
Core	1	=	1	=	00000001	
Core	2	=	2	=	00000010	
Core	3	=	4	=	00000100	
Core	4	=	8	=	00001000	
Core	5	=	16	=	00010000	
Core	6	=	32	=	00100000	
Core	7	=	64	=	01000000	
Core	8	=	128	=	10000000	
	

Add	the	decimal	values	together	to	use	multiple	cores.		255	=	11111111		=		all	8	cores.		
	
The	command	$CV.ProcessorAffinity = 192,	is	assigning	the	CoolSynthCV	application	to	cores	7	and	8	
(128	+	64	=	192).		These	two	logical	cores	correspond	to	physical	core	4	on	the	CPU.	
	

#pause while CV app starts	
Start-Sleep -s 30	
	

Sleep	for	30	seconds,	to	allow	the	application	CoolSynthCV	to	fully	start,	before	launching	other	
applications.	

#make CV app active to clear taskbar notification	
Set-WindowActive -Window $CV.MainWindowHandle	
Start-Sleep 2	
	

Set-WindowActive	gives	a	window	command	focus.		This	is	useful,	because	giving	an	application	focus	
clears	the	glowing	notification	that	keeps	the	Taskbar	in	front.		Essentially,	the	notification	says	"hey,	
this	application	is	open!"		To	which,	we	reply	"thanks,	I	see	it."		The	–Window	parameter	takes	a	
MainWindowHandle	argument.		We	return	the	MainWindowHandle	from	the	PID	stored	in	$CV,	with	
$CV.MainWindowHandle	and	use	it	as	the	argument	to	–Window.	

#run the CoolSynth application	
Start-Process -FilePath "D:\dev\CoolSynth\CoolSynth.exe"	
$RR = Get-Process CoolSynth	
$RR.ProcessorAffinity = 63	
	

As	with	CoolSynthCV,	we	launch	the	main	CoolSynth	application	with	Start-Process,	store	the	PID	in	a	
variable,	and	set	the	processor	affinity	(1	+	2	+	4	+	8	+	16	+	32	=	63).		We	are	assigning	CoolSynth	to	
logical	cores	1-6,	corresponding	to	physical	cores	1-3.	

#take focus, minimize and then maximize CS to prevent anything from showing in front of it	
Start-Sleep 4	
Set-WindowActive -Window $RR.MainWindowHandle	
Start-Sleep 2	
	

We	only	take	4	seconds	waiting	for	CoolSynth	to	start	up,	whereas	we	waited	for	30	seconds	with	
CoolSynthCV.		This	is	partly	because	CoolSynth	takes	longer	to	start	(mainly	due	to	the	Max	runtime	
starting	up),	but	also	because	nothing	will	start	up	that	depends	on	CoolSynth,	so	we	don't	need	to	be	as	
careful	to	make	sure	it	is	fully	up	and	running	before	moving	on.		We	then	activate	CoolSynth's	main	
window,	to	clear	the	Taskbar	notification.	

Set-WindowPosition -Minimize -Window $RR.MainWindowHandle	
Start-Sleep 2	
Set-WindowPosition -Maximize -Window $RR.MainWindowHandle	
	

Just	to	be	safe,	we	take	one	final	step	to	ensure	that	CoolSynth	is	maximized	and	in	front	of	everything	
else	that	may	have	popped	up	along	the	way.		We	do	this	by	passing	the	MainWindowHandle	from	the	
PID	in	$RR	with	the	–Minimize	command,	followed	by	passing	it	again	with	the	–Maximize	command,	
putting	us	into	full	screen	as	the	last	step	in	starting	the	exhibit.			

This	method	of	minimize/maximize	is	not	universally	proven	to	work.		On	one	installation,	we	instead	
used	the	Set-WindowActivemessage	on	a	number	of	applications	in	succession,	to	clear	all	of	their	
taskbar	notifications	before	maximizing	the	full	screen	application.		So	far	though,	some	combination	of	
these	methods	has	gotten	us	the	desired	result	with	Windows	10.	
	

PowerShell	Snap-ins	
Powershell	commands	can	easily	be	extended	with	libraries,	called	Snap-ins.		In	this	startup	script	the	
commands	Set-WindowActive	and	Set-WindowPosition	are	from	the	Windows	Automation	Snap-in	for	
Powershell	(WASP):	

https://wasp.codeplex.com/	

I	prefer	placing	Snap-ins	in:		

C:\Users\AP\Documents\WindowsPowerShell\Modules			

This	is	in	the	default	path	for	PowerShell,	so	your	scripts	can	make	use	of	them	there.		This	also	makes	
them	easy	to	find/copy/document	when	development	on	an	exhibit	is	finished.	

Shutdown	and	Restart	Scripts	
If	you	are	scheduling	shutdown	or	restart,	you	can	just	schedule	the	restart	or	shutdown	directly	in	Task	
Scheduler.		However,	if	you	want	to	have	Max	trigger	shutdown	or	restart,	it	can	do	so	by	creating	a	
batch	file	with	either	of	these	lines:	

shutdown.exe /s
shutdown.exe /r

	
Restart	and	shutdown	are	both	performed	by	shutdown.exe,	the	difference	is	whether	you	pass	the	/s	
flag	(for	shutdown)	or	the	/r	flag	(for	restart).		Place	either	one	in	a	batch	file	and	Max	can	run	it	
with	;max	launchbrowser.	

Scheduling	Startup	Script	
Security	Policy	
By	default,	execution	of	PowerShell	scripts	is	restricted.		Unless	a	user	runs	them	manually,	they	must	be	
signed	by	a	trusted	authority.		This	security	policy	can	be	changed:	

https://technet.microsoft.com/en-us/library/ee176961.aspx	

...but	there	are	safer	ways	to	deal	with	this	for	our	purposes.		If	you	look	at	the	detailed	Windows	10	
Deployment	Checklist	document,	you	will	see	that	the	startup	task	does	not	launch	the	startup	script	
directly.		Instead,	it	launches	PowerShell.exe	and	passes	arguments,	including	the	name	of	the	startup	
script	and	the	-executionpolicy bypass	argument.		This	tells	Windows	to	allow	this	particular	script	to	run	
as	an	exception	to	the	security	policy	on	scripting.	

Task	Scheduler	
To	schedule	a	PowerShell	script	to	run	at	logon,	follow	these	steps:	

• Start	>	“Task	Scheduler”	>	Create	Task…	
	

	
	

• In	the	General	tab,	give	the	task	a	name	and	description,	set	Configure	for	Windows	10.	
	

	
	

• In	the	Triggers	tab,	click	New	and	then	set	Begin	the	task	to	“At	log	on”	
	

	
	

• In	the	Actions	tab,	click	New.	Enter	“powershell.exe”	in	Program/script	and	put	the	
following	in	Add	arguments:	

	
-executionpolicy	bypass	-file	C:\path\to\script	

o The	first	argument	tells	the	computer	that	this	script	should	not	be	
blocked,	even	if	there	is	a	security	policy	disallowing	scripts.	

o The	second	argument	tells	PowerShell	which	script	to	run.	
o The	whole	argument	list	is	too	long	to	be	previewed	below,	but	both	

arguments	are	in	there.	
	

	

• If	this	is	a	laptop	or	tablet,	which	may	be	started	while	on	battery	power,	go	to	
the	Conditions	tab	and	uncheck	Start	the	task	only	if	the	computer	is	on	AC	
power.	
	

	
	

• Click	OK	

