

MSP

Getting Started

Tutorials and Topics

Reference

Table of Contents

Introduction . 5

Digital Audio: How Digital Audio Works . 8

How MSP Works: Max Patches and the MSP Signal Network . 22

Audio I/O: Audio input and output with MSP . 28

Tutorial 1: Fundamentals: Test tone . 43

Tutorial 2: Fundamentals: Adjustable oscillator . 48

Tutorial 3: Fundamentals: Wavetable oscillator . 53

Tutorial 4: Fundamentals: Routing signals . 59

Tutorial 5: Fundamentals: Turning signals on and off . 68

Tutorial 6: Fundamentals: Review . 76

Tutorial 7: Synthesis: Additive synthesis . 81

Tutorial 8: Synthesis: Tremolo and ring modulation . 85

Tutorial 9: Synthesis: Amplitude modulation . 89

Tutorial 10: Synthesis: Vibrato and FM . 93

Tutorial 11: Synthesis: Frequency modulation . 95

Tutorial 12: Synthesis: Waveshaping .99

Tutorial 13: Sampling: Recording and playback .104

Tutorial 14: Sampling: Playback with loops .109

Tutorial 15: Sampling: Variable-length wavetable .112

Tutorial 16: Sampling: Record and play audio files .117

Tutorial 17: Sampling: Review .121

Tutorial 18: MIDI control: Mapping MIDI to MSP .125

Tutorial 19: MIDI control: Synthesizer .130

Tutorial 20: MIDI control: Sampler .137

Tutorial 21: MIDI control: Using the poly~ object .143

Tutorial 22: MIDI control: Panning .150

Tutorial 23: Analysis: Viewing signal data .157

Tutorial 24: Analysis: Oscilloscope .163

Tutorial 25: Analysis: Using the FFT .166

Tutorial 26: Frequency Domain Signal Processing with pfft~ .172

Tutorial 27: Processing: Delay lines .189
 2

Table of Contents

Tutorial 28: Processing: Delay lines with feedback .192

Tutorial 29: Processing: Flange .196

Tutorial 30: Processing: Chorus .200

Tutorial 31: Processing: Comb filter .203

MSP Reference Manual .208

The dsp Object: Controlling and Automating MSP .543

MSP Object Thesaurus .545

Index .551
3

4

Copyright and Trademark Notices

This manual is copyright © 2000/2003 Cycling ’74.

MSP is copyright © 1997-2003 Cycling ’74—All rights reserved. Portions of MSP are based on Pd
by Miller Puckette, © 1997 The Regents of the University of California. MSP and Pd are based on
ideas in FTS, an advanced DSP platform © IRCAM.

Max is copyright © 1990-2003 Cycling ’74/IRCAM, l’Institut de Récherche et Coordination
Acoustique/Musique.

VST is a trademark of Steinberg Soft- und Hardware GmbH.

ReWire is a trademark of Propellerhead Software AS.

Credits

Original MSP Documentation: Chris Dobrian

Audio I/O: David Zicarelli, Andrew Pask, Darwin Grosse

MSP2 Reference: David Zicarelli, Gregory Taylor, Joshua Kit Clayton, jhno, Richard Dudas, R.
Luke DuBois, Andrew Pask

MSP2 Manual page example patches: R. Luke DuBois, Darwin Grosse, Ben Nevile, Joshua Kit
Clayton, David Zicarelli

Cover Design: Lilli Wessling Hart

Graphic Design: Gregory Taylor

Introduction

Signal processing in Max

MSP gives you over 170 Max objects with which to build your own synthesizers, samplers, and
effects processors as software instruments that perform audio signal processing.

A filter and delay effect processor in MSP

As you know, Max enables you to design your own programs for controlling MIDI synthesizers,
samplers, and effects processors.

MIDI control with Max

With the addition of the MSP objects, you can also create your own digital audio device designs—
your own computer music instruments—and incorporate them directly into your Max programs.
5

Introduction

Overview and Documentation

You can specify exactly how you want your instruments to respond to MIDI control, and you can
implement the entire system in a Max patch.

MIDI control of a parameter of an audio process

MSP objects are connected together by patch cords in the same way as Max objects. These con-
nected MSP objects form a signal network which describes a scheme for the production and mod-
ification of digital audio signals. (This signal network is roughly comparable to the instrument
definition familiar to users of Music N sound synthesis languages such as Csound.) The audio sig-
nals are played through the audio output jack of your computer, or through an installed sound
card, using CoreAudio on the Macintosh, MME or DirectSound on Windows, or ASIO on either
platform.

Signal network for an FM instrument

How To Use This Manual

The MSP Documentation contains the following sections:

Digital Audio explains how computers represent sound. Reading this chapter may be helpful if
MSP is your first exposure to digital manipulation of audio. If you already have experience in this
area, you can probably skip this chapter.
 6

Introduction

Overview and Documentation

How MSP Works provides an overview of the ideas behind MSP and how the software is integrated
into the Max environment. Almost everyone will want to read this brief chapter.

Audio Input and Output describes MSP support for Core Audio on Macintosh systems, support
for DirectSound on Windows systems, and audio interface cards. It explains how to use the DSP
Status window to monitor and tweak MSP performance.

The MSP Tutorials are over 30 step-by-step lessons in the basics of using MSP to create digital
audio applications. Each chapter is accompanied by a patch found in the MSP Tutorial folder. If
you’re just getting set up with MSP, you should at least check out the first tutorial, which covers set-
ting up MSP to make sound come out of your computer.

The MSP Object Reference section describes the workings of each of the MSP objects. It’s orga-
nized in alphabetical order.

Reading the manual online

The table of contents of the MSP documentation is bookmarked, so you can view the bookmarks
and jump to any topic listed by clicking on its names. To view the bookmarks, choose Book-
marks from the Windows menu. Click on the triangle next to each section to expand it.

Instead of using the Index at the end of the manual, it might be easier to use Acrobat Reader’s Find
command. Choose Find from the Tools menu, then type in a word you’re looking for. Find will
highlight the first instance of the word, and Find Again takes you to subsequent instances. We’d
like to take this opportunity to discourage you from printing out the manual unless you find it
absolutely necessary.

Other Resources for MSP Users

The help files found in the max- help folder provide interactive examples of the use of each MSP
object.

The Max/MSP Examples folder contains a number of interesting and amusing demonstrations of
what can be done with MSP.

The Cycling ’74 web site provides the latest updates to our software as well as an extensive list of
frequently asked questions and other support information.

Cycling ’74 runs an on-line Max/MSP discussion where you can ask questions about program-
ming, exchange ideas, and find out about new objects and examples other users are sharing. For
information on joining the discussion, as well as a guide to third-party Max/MSP resources, visit
http://www.cycling74.com/community

Finally, if you’re having trouble with the operation of MSP, send e-mail to
support@cycling74.com, and we’ll try to help you. We’d like to encourage you to submit questions
of a more conceptual nature (“how do I...?”) to the Max/MSP mailing list, so that the entire com-
munity can provide input and benefit from the discussion.
7

Digital Audio
How Digital Audio Works

A thorough explanation of how digital audio works is well beyond the scope of this manual. What
follows is a very brief explanation that will give you the minimum understanding necessary to use
MSP successfully.

For a more complete explanation of how digital audio works, we recommend The Computer Music
Tutorial by Curtis Roads, published in 1996 by the MIT Press. It also includes an extensive bibliog-
raphy on the subject.

Sound

Simple harmonic motion

The sounds we hear are fluctuations in air pressure—tiny variations from normal atmospheric
pressure—caused by vibrating objects. (Well, technically it could be water pressure if you’re listen-
ing underwater, but please keep your computer out of the swimming pool.)

As an object moves, it displaces air molecules next to it, which in turn displace air molecules next
to them, and so on, resulting in a momentary “high pressure front” that travels away from the
moving object (toward your ears). So, if we cause an object to vibrate—we strike a tuning fork, for
example—and then measure the air pressure at some nearby point with a microphone, the micro-
phone will detect a slight rise in air pressure as the “high pressure front” moves by. Since the tine of
the tuning fork is fairly rigid and is fixed at one end, there is a restoring force pulling it back to its
normal position, and because this restoring force gives it momentum it overshoots its normal
position, moves to the opposite extreme position, and continues vibrating back and forth in this
manner until it eventually loses momentum and comes to rest in its normal position. As a result,
our microphone detects a rise in pressure, followed by a drop in pressure, followed by a rise in
pressure, and so on, corresponding to the back and forth vibrations of the tine of the tuning fork.
8

Digital Audio

How Digital Audio Works

If we were to draw a graph of the change in air pressure detected by the microphone over time, we
would see a sinusoidal shape (a sine wave) rising and falling, corresponding to the back and forth
vibrations of the tuning fork.

Sinusoidal change in air pressure caused by a simple vibration back and forth

This continuous rise and fall in pressure creates a wave of sound. The amount of change in air
pressure, with respect to normal atmospheric pressure, is called the wave’s amplitude (literally, its
“bigness”). We most commonly use the term “amplitude” to refer to the peak amplitude, the great-
est change in pressure achieved by the wave.

This type of simple back and forth motion (seen also in the swing of a pendulum) is called simple
harmonic motion. It’s considered the simplest form of vibration because the object completes one
full back-and-forth cycle at a constant rate. Even though its velocity changes when it slows down
to change direction and then gains speed in the other direction—as shown by the curve of the sine
wave—its average velocity from one cycle to the next is the same. Each complete vibratory cycle
therefore occurs in an equal interval of time (in a given period of time), so the wave is said to be
periodic. The number of cycles that occur in one second is referred to as the frequency of the vibra-
tion. For example, if the tine of the tuning fork goes back and forth 440 times per second, its fre-
quency is 440 cycles per second, and its period is 1/440 second per cycle.

In order for us to hear such fluctuations of pressure:

• The fluctuations must be substantial enough to affect our tympanic membrane (eardrum),
yet not so substantial as to hurt us. In practice, the intensity of the changes in air pressure must
be greater than about 10-9 times atmospheric pressure, but not greater than about 10-3 times
atmospheric pressure. You’ll never actually need that information, but there it is. It means that
the softest sound we can hear has about one millionth the intensity of the loudest sound we
can bear. That’s quite a wide range of possibilities.

• The fluctuations must repeat at a regular rate fast enough for us to perceive them as a sound
(rather than as individual events), yet not so fast that it exceeds our ability to hear it. Text-
books usually present this range of audible frequencies as 20 to 20,000 cycles per second (cps,
also known as hertz, abbreviated Hz). Your own mileage may vary. If you are approaching
middle age or have listened to too much loud music, you may top out at about 17,000 Hz or
even lower.
9

Digital Audio

How Digital Audio Works

Complex tones

An object that vibrates in simple harmonic motion is said to have a resonant mode of vibration—
a frequency at which it will naturally tend to vibrate when set in motion. However, most real-
world objects have several resonant modes of vibration, and thus vibrate at many frequencies at
once. Any sound that contains more than a single frequency (that is, any sound that is not a simple
sine wave) is called a complex tone. Let’s take a stretched guitar string as an example.

A guitar string has a uniform mass across its entire length, has a known length since it is fixed at
both ends (at the “nut” and at the “bridge”), and has a given tension depending on how tightly it is
tuned with the tuning peg. Because the string is fixed at both ends, it must always be stationary at
those points, so it naturally vibrates most widely at its center.

A plucked string vibrating in its fundamental resonant mode

The frequency at which it vibrates depends on its mass, its tension, and its length. These traits stay
fairly constant over the course of a note, so it has one fundamental frequency at which it vibrates.
However, other modes of vibration are still possible.

Some other resonant modes of a stretched string

The possible modes of vibration are constrained by the fact that the string must remain stationary
at each end. This limits its modes of resonance to integer divisions of its length.

This mode of resonance would be impossible because the string is fixed at each end
 10

Digital Audio

How Digital Audio Works

Because the tension and mass are set, integer divisions of the string’s length result in integer multi-
ples of the fundamental frequency.

Each resonant mode results in a different frequency

In fact, a plucked string will vibrate in all of these possible resonant modes simultaneously, creat-
ing energy at all of the corresponding frequencies. Of course, each mode of vibration (and thus
each frequency) will have a different amplitude. (In the example of the guitar string, the longer
segments of string have more freedom to vibrate.) The resulting tone will be the sum of all of these
frequencies, each with its own amplitude.

As the string’s vibrations die away due to the damping force of the fixture at each end, each fre-
quency may die away at a different rate. In fact, in many sounds the amplitudes of the different
component frequencies may vary quite separately and differently from each other. This variety
seems to be one of the fundamental factors in our perception of sounds as having different tone
color (i.e., timbre), and the timbre of even a single note may change drastically over the course of
the note.

Harmonic tones

The combination of frequencies—and their amplitudes—that are present in a sound is called its
spectrum (just as different frequencies and intensities of light constitute a color spectrum). Each
individual frequency that goes into the makeup of a complex tone is called a partial. (It’s one part
of the whole tone.)

When the partials (component frequencies) in a complex tone are all integer multiples of the same
fundamental frequency, as in our example of a guitar string, the sound is said to have a harmonic
spectrum. Each component of a harmonic spectrum is called a harmonic partial, or simply a har-
monic. The sum of all those harmonically related frequencies still results in a periodic wave having
11

Digital Audio

How Digital Audio Works

the fundamental frequency. The integer multiple frequencies thus fuse “harmoniously” into a sin-
gle tone.

The sum of harmonically related frequencies still repeats at the fundamental frequency

This fusion is supported by the famous mathematical theorem of Jean-Baptiste Joseph Fourier,
which states that any periodic wave, no matter how complex, can be demonstrated to be the sum
of different harmonically related frequencies (sinusoidal waves), each having its own amplitude
and phase. (Phase is an offset in time by some fraction of a cycle.)

Harmonically related frequencies outline a particular set of related pitches in our musical percep-
tion.

Harmonic partials of a fundamental frequency ƒ, where ƒ = 65.4 Hz = the pitch low C

Each time the fundamental frequency is multiplied by a power of 2—2, 4, 8, 16, etc.—the per-
ceived musical pitch increases by one octave. All cultures seem to share the perception that there is
a certain “sameness” of pitch class between such octave-related frequencies. The other integer
multiples of the fundamental yield new musical pitches. Whenever you’re hearing a harmonic
complex tone, you’re actually hearing a chord! As we’ve seen, though, the combined result repeats
at the fundamental frequency, so we tend to fuse these frequencies together such that we perceive a
single pitch.

Inharmonic tones and noise

Some objects—such as a bell, for instance—vibrate in even more complex ways, with many dif-
ferent modes of vibrations which may not produce a harmonically related set of partials. If the fre-
quencies present in a tone are not integer multiples of a single fundamental frequency, the wave
does not repeat periodically. Therefore, an inharmonic set of partials does not fuse together so eas-
ily in our perception. We may be able to pick out the individual partials more readily, and—espe-
cially when the partials are many and are completely inharmonic—we may not perceive the tone
as having a single discernible fundamental pitch.
 12

Digital Audio

How Digital Audio Works

When a tone is so complex that it contains very many different frequencies with no apparent
mathematical relationship, we perceive the sound as noise. A sound with many completely ran-
dom frequencies and amplitudes—essentially all frequencies present in equal proportion—is the
static-like sound known as white noise (analogous to white light which contains all frequencies of
light).

So, it may be useful to think of sounds as existing on a continuum from total purity and predict-
ability (a sine wave) to total randomness (white noise). Most sounds are between these two
extremes. An harmonic tone—a trumpet or a guitar note, for example—is on the purer end of the
continuum, while a cymbal crash is closer to the noisy end of the continuum. Timpani and bells
may be just sufficiently suggestive of a harmonic spectrum that we can identify a fundamental
pitch, yet they contain other inharmonic partials. Other drums produce more of a band-limited
noise—randomly related frequencies, but restricted within a certain frequency range—giving a
sense of pitch range, or non-specific pitch, rather than an identifiable fundamental. It is important
to keep this continuum in mind when synthesizing sounds.

Amplitude envelope

Another important factor in the nearly infinite variety of sounds is the change in over-all ampli-
tude of a sound over the course of its duration. The shape of this macroscopic over-all change in
amplitude is termed the amplitude envelope. The initial portion of the sound, as the amplitude
envelope increases from silence to audibility, rising to its peak amplitude, is known as the attack of
the sound. The envelope, and especially the attack, of a sound are important factors in our ability
to distinguish, recognize, and compare sounds. We have very little knowledge of how to read a
graphic representation of a sound wave and hear the sound in our head the way a good sightreader
can do with musical notation. However, the amplitude envelope can at least tell us about the gen-
eral evolution of the loudness of the sound over time.

The amplitude envelope is the evolution of a sound’s amplitude over time

Amplitude and loudness

The relationship between the objectively measured amplitude of a sound and our subjective
impression of its loudness is very complicated and depends on many factors. Without trying to
explain all of those factors, we can at least point out that our sense of the relative loudness of two
sounds is related to the ratio of their intensities, rather than the mathematical difference in their
intensities. For example, on an arbitrary scale of measurement, the relationship between a sound
13

Digital Audio

How Digital Audio Works
of amplitude 1 and a sound of amplitude 0.5 is the same to us as the relationship between a sound
of amplitude 0.25 and a sound of amplitude 0.125. The subtractive difference between amplitudes
is 0.5 in the first case and 0.125 in the second case, but what concerns us perceptually is the ratio,
which is 2:1 in both cases.

Does a sound with twice as great an amplitude sound twice as loud to us? In general, the answer is
“no”. First of all, our subjective sense of “loudness” is not directly proportional to amplitude.
Experiments find that for most listeners, the (extremely subjective) sensation of a sound being
“twice as loud” requires a much greater than twofold increase in amplitude. Furthermore, our
sense of loudness varies considerably depending on the frequency of the sounds being considered.
We’re much more sensitive to frequencies in the range from about 300 Hz to 7,000 Hz than we are
to frequencies outside that range. (This might possibly be due evolutionarily to the importance of
hearing speech and many other important sounds which lie mostly in that frequency range.)

Nevertheless, there is a correlation—even if not perfectly linear—between amplitude and loud-
ness, so it’s certainly informative to know the relative amplitude of two sounds. As mentioned ear-
lier, the softest sound we can hear has about one millionth the amplitude of the loudest sound we
can bear. Rather than discuss amplitude using such a wide range of numbers from 0 to 1,000,000,
it is more common to compare amplitudes on a logarithmic scale.

The ratio between two amplitudes is commonly discussed in terms of decibels (abbreviated dB). A
level expressed in terms of decibels is a statement of a ratio relationship between two values—not
an absolute measurement. If we consider one amplitude as a reference which we call A0, then the
relative amplitude of another sound in decibels can be calculated with the equation:

level in decibels = 20 log10 (
A/A0)

If we consider the maximum possible amplitude as a reference with a numerical value of 1, then a
sound with amplitude 0.5 has 1/2 the amplitude (equal to 10-0.3) so its level is

20 log10 (
0.5/1) _ 20 (-0.3) = -6 dB

Each halving of amplitude is a difference of about -6 dB; each doubling of amplitude is an increase
of about 6 dB. So, if one amplitude is 48 dB greater than another, one can estimate that it’s about 28
(256) times as great.

Summary

A theoretical understanding of sine waves, harmonic tones, inharmonic complex tones, and
noise, as discussed here, is useful to understanding the nature of sound. However, most sounds
are actually complicated combinations of these theoretical descriptions, changing from one
instant to another. For example, a bowed string might include noise from the bow scraping against
the string, variations in amplitude due to variations in bow pressure and speed, changes in the
prominence of different frequencies due to bow position, changes in amplitude and in the funda-
mental frequency (and all its harmonics) due to vibrato movements in the left hand, etc. A drum
note may be noisy but might evolve so as to have emphases in certain regions of its spectrum that
imply a harmonic tone, thus giving an impression of fundamental pitch. Examination of existing
sounds, and experimentation in synthesizing new sounds, can give insight into how sounds are
composed. The computer provides that opportunity.
 14

Digital Audio How Digital Audio Works
Digital representation of sound

Sampling and quantizing a sound wave

To understand how a computer represents sound, consider how a film represents motion. A movie
is made by taking still photos in rapid sequence at a constant rate, usually twenty-four frames per
second. When the photos are displayed in sequence at that same rate, it fools us into thinking we
are seeing continuous motion, even though we are actually seeing twenty-four discrete images per
second. Digital recording of sound works on the same principle. We take many discrete samples of
the sound wave’s instantaneous amplitude, store that information, then later reproduce those
amplitudes at the same rate to create the illusion of a continuous wave.

The job of a microphone is to transduce (convert one form of energy into another) the change in
air pressure into an analogous change in electrical voltage. This continuously changing voltage
can then be sampled periodically by a process known as sample and hold. At regularly spaced
moments in time, the voltage at that instant is sampled and held constant until the next sample is
taken. This reduces the total amount of information to a certain number of discrete voltages.

Time-varying voltage sampled periodically

A device known as an analog-to-digital converter (ADC) receives the discrete voltages from the
sample and hold device, and ascribes a numerical value to each amplitude. This process of con-
verting voltages to numbers is known as quantization. Those numbers are expressed in the com-
puter as a string of binary digits (1 or 0). The resulting binary numbers are stored in memory —
usually on a digital audio tape, a hard disk, or a laser disc. To play the sound back, we read the
numbers from memory, and deliver those numbers to a digital-to-analog converter (DAC) at the
same rate at which they were recorded. The DAC converts each number to a voltage, and commu-
nicates those voltages to an amplifier to increase the amplitude of the voltage.

 In order for a computer to represent sound accurately, many samples must be taken per second—
many more than are necessary for filming a visual image. In fact, we need to take more than twice
as many samples as the highest frequency we wish to record. (For an explanation of why this is so,
see Limitations of Digital Audio on the next page.) If we want to record frequencies as high as
20,000 Hz, we need to sample the sound at least 40,000 times per second. The standard for com-
pact disc recordings (and for “CD-quality” computer audio) is to take 44,100 samples per second
for each channel of audio. The number of samples taken per second is known as the sampling rate.

This means the computer can only accurately represent frequencies up to half the sampling rate.
Any frequencies in the sound that exceed half the sampling rate must be filtered out before the
sampling process takes place. This is accomplished by sending the electrical signal through a low-
pass filter which removes any frequencies above a certain threshold. Also, when the digital signal
(the stream of binary digits representing the quantized samples) is sent to the DAC to be re-con-
verted into a continuous electrical signal, the sound coming out of the DAC will contain spurious
15

Digital Audio How Digital Audio Works
high frequencies that were created by the sample and hold process itself. (These are due to the
“sharp edges” created by the discrete samples, as seen in the above example.) Therefore, we need
to send the output signal through a low-pass filter, as well.

The digital recording and playback process, then, is a chain of operations, as represented in the
following diagram.

Digital recording and playback process

Limitations of digital audio

Sampling rate and Nyquist rate

We’ve noted that it’s necessary to take at least twice as many samples as the highest frequency we
wish to record. This was proven by Harold Nyquist, and is known as the Nyquist theorem. Stated
another way, the computer can only accurately represent frequencies up to half the sampling rate.
One half the sampling rate is often referred to as the Nyquist frequency or the Nyquist rate.

If we take, for example, 16,000 samples of an audio signal per second, we can only capture fre-
quencies up to 8,000 Hz. Any frequencies higher than the Nyquist rate are perceptually “folded”
back down into the range below the Nyquist frequency. So, if the sound we were trying to sample
contained energy at 9,000 Hz, the sampling process would misrepresent that frequency as 7,000
Hz—a frequency that might not have been present at all in the original sound. This effect is
known as foldover or aliasing. The main problem with aliasing is that it can add frequencies to the
digitized sound that were not present in the original sound, and unless we know the exact spec-
trum of the original sound there is no way to know which frequencies truly belong in the digitized
sound and which are the result of aliasing. That’s why it’s essential to use the low-pass filter before
the sample and hold process, to remove any frequencies above the Nyquist frequency.

To understand why this aliasing phenomenon occurs, think back to the example of a film camera,
which shoots 24 frames per second. If we’re shooting a movie of a car, and the car wheel spins at a
rate greater than 12 revolutions per second, it’s exceeding half the “sampling rate” of the camera.
The wheel completes more than 1/2 revolution per frame. If, for example it actually completes 18/24
of a revolution per frame, it will appear to be going backward at a rate of 6 revolutions per second.
In other words, if we don’t witness what happens between samples, a 270° revolution of the wheel
 16

Digital Audio

How Digital Audio Works

is indistinguishable from a -90° revolution. The samples we obtain in the two cases are precisely
the same.

For the camera, a revolution of 18/24 is no different from a revolution of -6/24

For audio sampling, the phenomenon is practically identical. Any frequency that exceeds the
Nyquist rate is indistinguishable from a negative frequency the same amount less than the Nyquist
rate. (And we do not distinguish perceptually between positive and negative frequencies.) To the
extent that a frequency exceeds the Nyquist rate, it is folded back down from the Nyquist fre-
quency by the same amount.

For a demonstration, consider the next two examples. The following example shows a graph of a
4,000 Hz cosine wave (energy only at 4,000 Hz) being sampled at a rate of 22,050 Hz. 22,050 Hz is
half the CD sampling rate, and is an acceptable sampling rate for sounds that do not have much
energy in the top octave of our hearing range. In this case the sampling rate is quite adequate
because the maximum frequency we are trying to record is well below the Nyquist frequency.

A 4,000 Hz cosine wave sampled at 22,050 Hz

Now consider the same 4,000 Hz cosine wave sampled at an inadequate rate, such as 6,000 Hz.
The wave completes more than 1/2 cycle per sample, and the resulting samples are indistinguish-
able from those that would be obtained from a 2,000 Hz cosine wave.

A 4,000 Hz cosine wave undersampled at 6,000 Hz
17

Digital Audio How Digital Audio Works
The simple lesson to be learned from the Nyquist theorem is that digital audio cannot accurately
represent any frequency greater than half the sampling rate. Any such frequency will be misrepre-
sented by being folded over into the range below half the sampling rate.

Precision of quantization

Each sample of an audio signal must be ascribed a numerical value to be stored in the computer.
The numerical value expresses the instantaneous amplitude of the signal at the moment it was
sampled. The range of the numbers must be sufficiently large to express adequately the entire
amplitude range of the sound being sampled.

The range of possible numbers used by a computer depends on the number of binary digits (bits)
used to store each number. A bit can have one of two possible values: either 1 or 0. Two bits
together can have one of four possible values: 00, 01, 10, or 11. As the number of bits increases, the
range of possible numbers they can express increases by a power of two. Thus, a single byte (8 bits)
of computer data can express one of 28 = 256 possible numbers. If we use two bytes to express each
number, we get a much greater range of possible values because 216 = 65,536.

The number of bits used to represent the number in the computer is important because it deter-
mines the resolution with which we can measure the amplitude of the signal. If we use only one
byte to represent each sample, then we must divide the entire range of possible amplitudes of the
signal into 256 parts since we have only 256 ways of describing the amplitude.

Using one byte per sample, each sample can have one of only 256 different possible values

For example, if the amplitude of the electrical signal being sampled ranges from -10 volts to +10
volts and we use one byte for each sample, each number does not represent a precise voltage but
rather a 0.078125 V portion of the total range. Any sample that falls within that portion will be
ascribed the same number. This means each numerical description of a sample’s value could be off
from its actual value by as much as 0.078125V—1/256 of the total amplitude range. In practice each
sample will be off by some random amount from 0 to 1/256 of the total amplitude range. The mean
error will be 1/512 of the total range.

This is called quantization error. It is unavoidable, but it can be reduced to an acceptable level by
using more bits to represent each number. If we use two bytes per sample, the quantization error
will never be greater than 1/65,536 of the total amplitude range, and the mean error will be 1/131,072.

Since the quantization error for each sample is usually random (sometimes a little to high, some-
times a little too low), we generally hear the effect of quantization error as white noise. This noise is
not present in the original signal. It is added into the digital signal by the imprecise nature of quan-
tization. This is called quantization noise.
 18

Digital Audio How Digital Audio Works
The ratio of the total amplitude range to the quantization error is called the signal-to-quantization-
noise-ratio (SQNR). This is the ratio of the maximum possible signal amplitude to the average
level quantization of the quantization noise, and is usually stated in decibels.

As a rule of thumb, each bit of precision used in quantization adds 6 dB to the SQNR. Therefore,
sound quantized with 8-bit numerical precision will have a best case SQNR of about 48 dB. This is
adequate for cases where fidelity is not important, but is certainly not desirable for music or other
critical purposes. Sound sampled with 16-bit precision (“CD-quality”) has a SQNR of 96 dB,
which is quite good—much better than traditional tape recording.

In short, the more bits used by the computer to store each sample, the better the potential ratio of
signal to noise.

Memory and storage

We have seen that the standard sampling rate for high-fidelity audio is 44,100 samples per second.
We’ve also seen that 16 bits (2 bytes) are needed per sample to achieve a good signal-to-noise ratio.
With this information we can calculate the amount of data needed for digital audio: 41,000 sam-
ples per second, times 2 bytes per sample, times 2 channels for stereo, times 60 seconds per minute
equals more than 10 megabytes of data per minute of CD-quality audio.

For this quality of audio, a high-density floppy disk holds less than 8 seconds of sound, and a 100
MB Zip cartridge holds less than 10 minutes. Clearly, the memory and storage requirements of
digital audio are substantial. Fortunately, a compact disc holds over an hour of stereo sound, and a
computer hard disk of at least 1 gigabyte is standard for audio recording and processing.

Clipping

If the amplitude of the incoming electrical signal exceeds the maximum amplitude that can be
expressed numerically, the digital signal will be a clipped-off version of the actual sound.

A signal that exceeds maximum amplitude will be clipped when it is quantized

The clipped sample will often sound quite different from the original. Sometimes this type of clip-
ping causes only a slight distortion of the sound that is heard as a change in timbre. More often
though, it sounds like a very unpleasant noise added to the sound. For this reason, it’s very impor-
tant to take precautions to avoid clipping. The amplitude of the electrical signal should not exceed
the maximum expected by the ADC.
19

Digital Audio How Digital Audio Works
It’s also possible to produce numbers in the computer that exceed the maximum expected by the
DAC. This will cause the sound that comes out of the DAC to be a clipped version of the digital
signal. Clipping by the DAC is just as bad as clipping by the ADC, so care must be taken not to
generate a digital signal that goes beyond the numerical range the DAC is capable of handling.

Advantages of digital audio

Synthesizing digital audio

Since a digital representation of sound is just a list of numbers, any list of numbers can theoreti-
cally be considered a digital representation of a sound. In order for a list of numbers to be audible
as sound, the numerical values must fluctuate up and down at an audio rate. We can listen to any
such list by sending the numbers to a DAC where they are converted to voltages. This is the basis of
computer sound synthesis. Any numbers we can generate with a computer program, we can listen
to as sound.

Many methods have been discovered for generating numbers that produce interesting sounds.
One method of producing sound is to write a program that repeatedly solves a mathematical
equation containing two variables. At each repetition, a steadily increasing value is entered for one
of the variables, representing the passage of time. The value of the other variable when the equa-
tion is solved is used as the amplitude for each moment in time. The output of the program is an
amplitude that varies up and down over time.

For example, a sine wave can be produced by repeatedly solving the following algebraic equation,
using an increasing value for n:

y = A sin(2_ƒn/R+ø)

where A is the amplitude of the wave, ƒ is the frequency of the wave, n is the sample number (0,1,
2,3, etc.), R is the sampling rate, and ø is the phase. If we enter values for A, ƒ,and ø, and repeatedly
solve for y while increasing the value of n, the value of y (the output sample) will vary sinusoidally.

A complex tone can be produced by adding sinusoids—a method known as additive synthesis:

y = A1 sin(2_ƒ1n/R+ø1) + A2 sin(2_ƒ2n/R+ø2) + ...

This is an example of how a single algebraic expression can produce a sound. Naturally, many
other more complicated programs are possible. A few synthesis methods such as additive synthe-
sis, wavetable synthesis, frequency modulation, and waveshaping are demonstrated in the MSP
Tutorial.

Manipulating digital signals

Any sound in digital form—whether it was synthesized by the computer or was quantized from a
“real world” sound—is just a series of numbers. Any arithmetic operation performed with those
numbers becomes a form of audio processing.
 20

Digital Audio How Digital Audio Works
For example, multiplication is equivalent to audio amplification. Multiplying each number in a
digital signal by 2 doubles the amplitude of the signal (increases it 6 dB). Multiplying each num-
ber in a signal by some value between 0 and 1 reduces its amplitude.

Addition is equivalent to audio mixing. Given two or more digital signals, a new signal can be cre-
ated by adding the first numbers from each signal, then the second numbers, then the third num-
bers, and so on.

An echo can be created by recalling samples that occurred earlier and adding them to the current
samples. For example, whatever signal was sent out 1000 samples earlier could be sent out again,
combined with the current sample.

y = xn + A yn-1000

As a matter of fact, the effects that such operations can have on the shape of a signal (audio or any
other kind) are so many and varied that they comprise an entire branch of electrical engineering
called digital signal processing (DSP). DSP is concerned with the effects of digital filters—formu-
lae for modifying digital signals by combinations of delay, multiplication, addition, and other
numerical operations.

Summary

This chapter has described how the continuous phenomenon of sound can be captured and faith-
fully reproduced as a series of numbers, and ultimately stored in computer memory as a stream of
binary digits. There are many benefits obtainable only by virtue of this digital representation of
sound: higher fidelity recording than was previously possible, synthesis of new sounds by mathe-
matical procedures, application of digital signal processing techniques to audio signals, etc.

MSP provides a toolkit for exploring this range of possibilities. It integrates digital audio record-
ing, synthesis, and processing with the MIDI control and object-based programming of Max.
21

How MSP Works
Max Patches and the MSP Signal Network

Introduction

Max objects communicate by sending each other messages through patch cords. These messages
are sent at a specific moment, either in response to an action taken by the user (a mouse click, a
MIDI note played, etc.) or because the event was scheduled to occur (by metro, delay, etc.).

MSP objects are connected by patch cords in a similar manner, but their inter-communication is
conceptually different. Rather than establishing a path for messages to be sent, MSP connections
establish a relationship between the connected objects, and that relationship is used to calculate
the audio information necessary at any particular instant. This configuration of MSP objects is
known as the signal network.

The following example illustrates the distinction between a Max patch in which messages are sent
versus a signal network in which an ongoing relationship is established.

Max messages occur at a specific instant; MSP objects are in constant communication

In the Max example on the left, the number box doesn’t know about the number 0.75 stored in the
float object. When the user clicks on the button, the float object sends out its stored value. Only
then does the number box receive, display, and send out the number 0.75. In the MSP example on
the right, however, each outlet that is connected as part of the signal network is constantly contrib-
uting its current value to the equation. So, even without any specific Max message being sent, the
*~ object is receiving the output from the two sig~ objects, and any object connected to the outlet
of *~ would be receiving the product 0.75.

Another way to think of a MSP signal network is as a portion of a patch that runs at a faster
(audio) rate than Max. Max, and you the user, can only directly affect that signal portion of the
patch every millisecond. What happens in between those millisecond intervals is calculated and
performed by MSP. If you think of a signal network in this way—as a very fast patch—then it still
makes sense to think of MSP objects as “sending” and “receiving” messages (even though those
messages are sent faster than Max can see them), so we will continue to use standard Max termi-
nology such as send, receive, input, and output for MSP objects.
22

How MSP Works Max Patches and
the MSP Signal Network
Audio rate and control rate

The basic unit of time for scheduling events in Max is the millisecond (0.001 seconds). This
rate—1000 times per second—is generally fast enough for any sort of control one might want to
exert over external devices such as synthesizers, or over visual effects such as QuickTime movies.

Digital audio, however, must be processed at a much faster rate—commonly 44,100 times per sec-
ond per channel of audio. The way MSP handles this is to calculate, on an ongoing basis, all the
numbers that will be needed to produce the next few milliseconds of audio. These calculations are
made by each object, based on the configuration of the signal network.

An oscillator (cycle~), and an amplifier (*~) controlled by another oscillator (phasor~)

In this example, a cosine waveform oscillator with a frequency of 2000 Hz (the cycle~ object) has
its amplitude scaled (every sample is multiplied by some number in the *~ object) then sent to the
digital-to-analog converter (dac~). Over the course of each second, the (sub-audio) sawtooth
wave output of the phasor~ object sends a continuous ramp of increasing values from 0 to 1. Those
increasing numbers will be used as the right operand in the *~ for each sample of the audio wave-
form, and the result will be that the 2000 Hz tone will fade in linearly from silence to full ampli-
tude each second. For each millisecond of audio, MSP must produce about 44 sample values
(assuming an audio sample rate of 44,100 Hz), so for each sample it must look up the proper value
in each oscillator and multiply those two values to produce the output sample.

Even though many MSP objects accept input values expressed in milliseconds, they calculate
samples at an audio sampling rate. Max messages travel much more slowly, at what is often
referred to as a control rate. It is perhaps useful to think of there being effectively two different rates
of activity: the slower control rate of Max’s scheduler, and the faster audio sample rate.

Note: Since you can specify time in Max in floating-point milliseconds, the resolution of the
scheduler varies depending on how often it runs. The exact control rate is set by a number of MSP
settings we’ll introduce shortly. However, it is far less efficient to “process” audio using the “control”
functions running in the scheduler than it is to use the specialized audio objects in MSP.

The link between Max and MSP

Some MSP objects exist specifically to provide a link between Max and MSP—and to translate
between the control rate and the audio rate. These objects (such as sig~ and line~) take Max mes-
sages in their inlets, but their outlets connect to the signal network; or conversely, some objects
23

How MSP Works Max Patches and
the MSP Signal Network
(such as snapshot~) connect to the signal network and can peek (but only as frequently as once
per millisecond) at the value(s) present at a particular point in the signal network.

Supply a Max message to the signal network, or get a Max message from a signal

These objects are very important because they give Max, and you the user, direct control over
what goes on in the signal network.

User interface control over the signal’s amplitude

Some MSP object inlets accept both signal input and Max messages. They can be connected as
part of a signal network, and they can also receive instructions or modifications via Max mes-
sages. For example the dac~ (digital-to-analog converter) object, for playing the audio signal, can
be turned on and off with the Max messages start and stop.

Some MSP objects can receive audio signals and Max messages in the same inlet

And the cycle~ (oscillator) object can receive its frequency as a Max float or int message, or it can
receive its frequency from another MSP object (although it can’t do both at the same time, because
 24

How MSP Works Max Patches and
the MSP Signal Network
the audio input can be thought of as constantly supplying values that would immediately override
the effect of the float or int message).

Some MSP objects can receive either Max messages or signals for the same purpose

So you see that a Max patch (or subpatch) may contain both Max objects and MSP objects. For
clear organization, it is frequently useful to encapsulate an entire process, such as a signal network,
in a subpatch so that it can appear as a single object in another Max patch.

Encapsulation can clarify relationships in a Max patch

Limitations of MSP

From the preceding discussion, it’s apparent that digital audio processing requires a lot of “number
crunching”. The computer must produce tens of thousands of sample values per second per chan-
nel of sound, and each sample may require many arithmetic calculations, depending on the com-
plexity of the signal network. And in order to produce realtime audio, the samples must be
calculated at least as fast as they are being played.

Realtime sound synthesis of this complexity on a general-purpose personal computer was pretty
much out of the question until the introduction of sufficiently fast processors such as the Pow-
erPC. Even with the PowerPC, though, this type of number crunching requires a great deal of the
processor’s attention. So it’s important to be aware that there are limitations to how much your
computer can do with MSP.

Unlike a MIDI synthesizer, in MSP you have the flexibility to design something that is too compli-
cated for your computer to calculate in real time. The result can be audio distortion, a very unre-
sponsive computer, or in extreme cases, crashes.

Because of the variation in processor performance between computers, and because of the great
variety of possible signal network configurations, it’s difficult to say precisely what complexity of
audio processing MSP can or cannot handle. Here are a few general principles:

• The faster your computer’s CPU, the better will be the performance of MSP. We strongly rec-
ommend computers that use the PowerPC 604 or newer processors. Older PowerBook mod-
els such as the 5300 series are particularly ill-suited to run MSP, and are not recommended.
25

How MSP Works Max Patches and
the MSP Signal Network
• A fast hard drive and a fast SCSI connection will improve input/output of audio files, although
MSP will handle up to about eight tracks at once on most computers with no trouble.

• Turning off background processes (such as file sharing) will improve performance.

• Reducing the audio sampling rate will reduce how many numbers MSP has to compute for a
given amount of sound, thus improving its performance (although a lower sampling rate will
mean degradation of high frequency response). Controlling the audio sampling rate is dis-
cussed in the Audio Input and Output chapter.

When designing your MSP instruments, you should bear in mind that some objects require more
intensive computation than others. An object that performs only a few simple arithmetic opera-
tions (such as sig~, line~, +~, -~, *~, or phasor~) is computationally inexpensive. (However, /~ is
much more expensive.) An object that looks up a number in a function table and interpolates
between values (such as cycle~) requires only a few calculations, so it’s likewise not too expensive.
The most expensive objects are those which must perform many calculations per sample: filters
(reson~, biquad~), spectral analyzers (fft~, ifft~), and objects such as play~, groove~, comb~, and
tapout~ when one of their parameters is controlled by a continuous signal. Efficiency issues are
discussed further in the MSP Tutorial.

Advantages of MSP

The PowerPC is a general purpose computer, not a specially designed sound processing computer
such as a commercial sampler or synthesizer, so as a rule you can’t expect it to perform quite to
that level. However, for relatively simple instrument designs that meet specific synthesis or pro-
cessing needs you may have, or for experimenting with new audio processing ideas, it is a very
convenient instrument-building environment.

1. Design an instrument to fit your needs. Even if you have a lot of audio equipment, it probably
cannot do every imaginable thing you need to do. When you need to accomplish a specific
task not readily available in your studio, you can design it yourself.

2. Build an instrument and hear the results in real time. With non-realtime sound synthesis pro-
grams you define an instrument that you think will sound the way you want, then compile it
and test the results, make some adjustments, recompile it, etc. With MSP you can hear each
change that you make to the instrument as you build it, making the process more interactive.

3. Establish the relationship between gestural control and audio result. With many commercial
instruments you can’t change parameters in real time, or you can do so only by programming
in a complex set of MIDI controls. With Max you can easily connect MIDI data to the exact
parameter you want to change in your MSP signal network, and you know precisely what
aspect of the sound you are controlling with MIDI.

4. Integrate audio processing into your composition or performance programs. If your musical work
consists of devising automated composition programs or computer-assisted performances in

Note: To see how much of the processor’s time your patch is taking, look at the CPU Utilization
value in the DSP Status window. Choose DSP Status… from the Options menu to open this
window.
 26

How MSP Works Max Patches and
the MSP Signal Network
Max, now you can incorporate audio processing into those programs. Need to do a hands-
free crossfade between your voice and a pre-recorded sample at a specific point in a perfor-
mance? You can write a Max patch with MSP objects that does it for you, triggered by a single
MIDI message.

Some of these ideas are demonstrated in the MSP tutorials.

See Also

Audio I/O Audio input and output with MSP
27

Audio I/O
Audio input and output with MSP

MSP interfaces with your computer's audio hardware via the dac~ and adc~ objects and their
easy-to-use equivalents ezdac~ and ezadc~. If you don't have any special audio hardware and have
no need for inter-application audio routing, the default driver on your system will give you stereo
full-duplex audio I/O with no special configuration on your part.

In addition to Core Audio or MME on Windows, there are a number of other ways to get audio
into and out of Max/MSP. Each of these methods involves using what we call a driver, which is
actually a special type of Max object. Some of these drivers facilitate the use of MSP with third-
party audio hardware. Also, a non real-time driver allows you to use MSP as a disk-based audio
processing and synthesis system, removing the limit of how much processing you can do with
your CPU in real time.

MSP audio driver objects are located in the ad folder located in the /Library/Application Support/
Cycling '74 folder on Macintosh or in the C:\Program Files\Common Files\Cycling '74\ad folder
on Windows. These object files must be in this folder called ad (which stands for audio driver),
otherwise MSP will be unable to locate them.

We will begin with a discussion of audio input/output in MSP in general. Later in this chapter we
will discuss aspects of specific audio drivers that are available to you in MSP. First we'll discuss the
DSP Status window and how to use it to get information about your audio hardware and set
parameters for how MSP handles audio input and output.

The DSP Status Window

All global audio parameters in MSP are displayed in the DSP Status window. To open the DSP
Status window, just double-click on any dac~ or adc~ object in a locked Patcher window. Alter-
nately, you can choose DSP Status… from the Options menu.

The DSP Status window is arranged as a group of menus and checkboxes that set all of the param-
eters of the audio input and output in MSP. Since all of these options can be changed from within
your patch (see below), the DSP Status window serves as a monitor for your current audio settings
as well.

Note: The DSP Status window is in fact a Max patch (called DSP Status, in the patches sub-
folder of Max). Every parameter shown in the DSP Status window is a menu or checkbox
hooked up to an instance of the adstatus object. The adstatus object can be used inside of your
MSP patches so that you can set and restore audio parameters specifically for certain patches.
The adstatus object is also useful for obtaining information current CPU load, vector size, and
sampling rate. See the adstatus object manual pages in the MSP Reference Manual for more
details.
28

Audio I/O Audio input and output with MSP
At the very top of the DSP Status window is a pop-up menu for turning the audio in MSP on and
off. If you use another method to turn the audio on or off, the menu will update to reflect the cur-
rent state.

The second pop-up menu allows you to view and select an audio driver for MSP. The specific
audio drivers will be discussed later in this chapter. A brief summary will suffice for now:

None This setting shuts off MSP audio processing.

Core Audio This is the default audio driver for MSP on Macintosh. It interfaces with the sys-
tem’s built-in Core Audio system and can be used with the built-in audio of the
computer, or, with the proper software support, a third-party hardware interface,
such as ASIO.

MME or (Windows only) On Windows, MSP loads the MME driver by default. If you have
 DirectSound correctly installed external hardware and it also supports DirectSound, it should

also appear as an option on the pop-up menu.

ASIO (Windows only) If you have a third-party audio interface which supports ASIO (a
cross-platform audio hardware standard developed by Steinberg), and it is
installed correctly, it will be found by the MSP ASIO driver. You may have as many
ASIO devices as you wish; they will all be found by the driver and will appear in
the Driver pull-down menu in the DSP Status Window preceded by the word
ASIO.

NonRealTime This driver enables MSP to work in non real-time mode, allowing you to synthe-
size and process audio without any real-time processor performance limitations.
Real-time audio input and output are disabled under this driver.

Only one audio driver can be selected at any given time. MSP saves the settings for each audio
driver separately and will recall the last used audio driver when you restart Max.

The next two pop-up menus are active only when using the Core Audio driver on Macintosh or
ASIO drivers. When the Core Audio driver or either the MME or DirectSound drivers on Win-
dows are selected, the pop-up menus allow you to change the audio input source. On Macintosh
only, an additional pop-up menu lets you choose whether or not audio playthrough is enabled.
These settings can also be changed using the Audio MIDI Setup application on Macintosh or the
29

Audio I/O Audio input and output with MSP
Sounds and Audio Devices Properties window (Start – Settings – Control Panel – Sounds and
Audio Devices) on Windows, but only with these menus while MSP is running.

When ASIO is in use, the pop-up menus allow you to set the clock source for your audio hardware
and whether or not to prioritize MIDI input and output over audio I/O.

The next three fields in the DSP Status window monitor the amount of signal processing MSP is
currently doing. The CPU Utilization field displays a rough estimate of the how much of your
computer's CPU is being allocated for crunching audio in MSP. The Poll checkbox turns on and
off the CPU Utilization auto-polling feature (it will update automatically four times a second
when this is checked). If you turn off auto-polling, you can update the CPU readout manually by
clicking on the Update button.

 The number of Function Calls gives an approximate idea of how many calculations are being
required for each sample of audio. The number next to Signals Used shows the number of internal
buffers that were needed by MSP to connect the signal objects used in the current signal net-
work.Both of these fields will update whenever you change the number of audio objects or how
they are patched together.

The next two sections have Override checkboxes next to a number of the pop-up menus. When
checked, Override means that the setting you pick will not be saved in the preferences file for the
current audio driver. By default, all Overrides are disabled, meaning that the currently displayed
settings will be saved and restored the next time you launch Max/MSP.

You can set the audio sampling rate with the Sampling Rate pop-up menu. For full-range audio,
the recommended sampling rate is 44.1 kHz. Using a lower rate will reduce the number of samples
that MSP has to calculate, thus lightening your computer’s burden, but it will also reduce the fre-
quency range. If your computer is struggling at 44.1 kHz, you should try a lower rate.

he I/O Vector Size may have an effect on latency and overall performance. A smaller vector size
may reduce the inherent delay between audio input and audio output, because MSP has to per-
form calculations for a smaller chunk of time. On the other hand, there is an additional computa-
tional burden each time MSP prepares to calculate another vector (the next chunk of audio), so it
 30

Audio I/O Audio input and output with MSP
is easier over-all for the processor to compute a larger vector. However, there is another side to this
story. When MSP calculates a vector of audio, it does so in what is known as an interrupt. If MSP is
running on your computer, whatever you happen to be doing (word processing, for example) is
interrupted and an I/O vector’s worth of audio is calculated and played. Then the computer
returns to its normally scheduled program. If the vector size is large enough, the computer may get
a bit behind and the audio output may start to click because the processing took longer than the
computer expected. Reducing the I/O Vector Size may solve this problem, or it may not. On the
other hand, if you try to generate too many interrupts, the computer will slow down trying to pro-
cess them (saving what you are doing and starting another task is hard work). Therefore, you'll
typically find the smaller I/O Vector Sizes consume a greater percentage of the computer's
resources. Optimizing the performance of any particular signal network when you are close to the
limit of your CPU’s capability is a trial-and-error process. That’s why MSP provides you with a
choice of vector sizes.

Changing the vector sizes does not affect the actual quality of the audio itself, unlike changing the
sampling rate, which affects the high frequency response. Changing the signal vector size won’t
have any effect on latency, and will have only a slight effect on overall performance (the larger the
size, the more performance you can expect). However, certain types of algorithms benefit from a
small signal vector size. For instance, the minimum delay you can get from MSP’s delay line
objects tapin~ and tapout~ is equal to the number of samples in one signal vector at the current
sampling rate. With a signal vector size of 64 at 44.1 kHz sampling rate, this is 1.45 milliseconds,
while at a signal vector size of 1024, it is 23.22 milliseconds. The Signal Vector size in MSP can be
set as low as 2 samples, and in most cases can go as high as the largest available I/O Vector Size for
your audio driver. However, if the I/O Vector Size is not a power of 2, the maximum signal vector
size is the largest power of 2 that divides evenly into the I/O vector size.

The Signal Vector Size is how many audio samples MSP calculates at a time. There are two vector
sizes you can control. The I/O Vector Size (I/O stands for input/output) controls the number of
samples that are transferred to and from the audio interface at one time. The Signal Vector Size sets
the number of samples that are calculated by MSP objects at one time. This can be less than or
equal to the I/O Vector Size, but not more. If the Signal Vector Size is less than the I/O Vector Size,
MSP calculates two or more signal vectors in succession for each I/O vector that needs to be calcu-

Note: Some audio interface cards do not provide a choice of I/O Vector Sizes. There are also
some ASIO drivers whose selection of I/O Vector Sizes may not conform to the multiple-of-a-
power-of-2 limitation currently imposed by MSP's ASIO support. In some cases, this limita-
tion can be remedied by using the ASIO driver at a different sampling rate.

Note: Subpatches loaded into the poly~ object can function at different sampling rates and vec-
tor sizes from the top-level patch. In addition, the poly~ object allows up- and down-sampling
as well as different vector sizes. The DSP Status window only displays and changes settings for
the top-level patch.
31

Audio I/O Audio input and output with MSP
lated. With an I/O vector size of 256, and a sampling rate of 44.1 kHz, MSP calculates about 5.8
milliseconds of audio data at a time.

The Max Scheduler in Overdrive option enables you to turn Max's Overdrive setting on and off
from within the DSP Status window. When Overdrive is enabled, the Max event scheduler runs at
interrupt level. The event scheduler does things like trigger the bang from a repeating metro object,
as well as send out any recently received MIDI data. When it is not enabled, overdrive runs the
event scheduler inside a lower-priority event handling loop that can be interrupted by doing
things like pulling down a menu. You can also enable and disable Overdrive using the Options
menu. Overdrive generally improves timing accuracy, but there may be exceptions, and some
third-party software may not work properly when Overdrive is enabled.

The Scheduler in Audio Interrupt feature is available when Overdrive is enabled. It runs the Max
event scheduler immediately before processing a signal vector’s worth of audio. Enabling Sched-
uler in Audio Interrupt can greatly improve the timing of audio events that are triggered from con-
trol processes or external MIDI input. However, the improvement in timing can be directly related
to your choice of I/O Vector Size, since this determines the interval at which events outside the
scheduler (such as MIDI input and output) affect Max. When the Signal Vector Size is 512, the
scheduler will run every 512 samples. At 44.1 kHz, this is every 11.61 milliseconds, which is just at
the outer limits of timing acceptability. With smaller Signal Vector Sizes (256, 128, 64), the timing
will sound “tighter.” Since you can change all of these parameters as the music is playing, you can
experiment to find acceptable combination of precision and performance.

If you are not doing anything where precise synchronization between the control and audio is
important, leave Scheduler in Audio Interrupt unchecked. You’ll get a bit more overall CPU per-
formance for signal processing.

The pop-up menus labeled Input Channel 1, Input Channel 2, Output Channel 1, and Output
Channel 2 allow you to map the first two logical channels of I/O in MSP (i.e. the first two outlets of
the adc~ object and the first two inlets of the dac~ object) to physical channels used by your audio-
driver. Different audio drivers give you different options, for example, the MME driver on Win-
dows only supports two channels, so you will normally use the default options. To map additional
logical channels, use the I/O Mappings window, which you can view by clicking the I/O Mappings
button at the bottom of the DSP Status window (see below for more information about the I/O
 32

Audio I/O Audio input and output with MSP
Mappings window). In addition, you can use the adstatus object from within your patch to map
any of the 512 logical audio I/O channels.

The Optimize pop-up menu is found only on the Macintosh version of MSP. It allows you to select
whether G4 (Altivec) vector optimization will be used by MSP when computing audio. Vector
optimization allows four samples to be processed within the space of a single instruction. How-
ever, not all audio signal processing algorithms can be optimized in this way (for example, recur-
sive filter algorithms are substantially immune from vector optimization). Leaving this option on
when using MSP on a G4 machine will enhance CPU utilization and performance, although the
exact performance gain depends on the algorithm you are using and the number of MSP objects
that implement it that have been vector-optimized. If you are using a pre-G4 Macintosh turning
the option on will have no effect.

The CPU Limit option allows you to set a limit (expressed in terms of a percentage of your com-
puter's CPU) to how much signal processing MSP is allowed to do. MSP will not go above the set
CPU limit for a sustained period, allowing your computer to perform other tasks without MSP
locking them out. The trade-off, however, is that you'll hear clicks in the audio output when the
CPU goes over the specified limit. Setting this value to either ‘0’ or ‘100’ will disable CPU limiting.

About Logical Input and Output Channels

In MSP 2, you can create a dac~ or adc~ object that uses a channel number between 1 and 512.
These numbers refer to what we call logical channels and can be dynamically reassigned to physi-
cal device channels of a particular driver using either the DSP Status window, its I/O Mappings
subwindow, or an adstatus object with an input or output keyword argument.
33

Audio I/O Audio input and output with MSP
The adc~ and dac~ objects allow you to specify arguments which define which logical channels are
mapped to their inlets and outlets, respectively. In the example below, multiple logical channels
are in use in a simple patch:

In this example, two separate adc~ objects output audio signals from logical channel pairs 1/2 and
3/4, respectively. The output of all four channels is sent to gain~ objects which attenuate the
incoming signals and send them to the first four logical output channels, as specified by the first
dac~ object. The input signals are also multiplied (ring modulated) and sent out logical channels 9
and 10. Up to sixteen arguments can be typed into a single adc~ or dac~ object; if you want to use
more than 16 logical channels, you can use multiple adc~ and dac~ objects. The ezadc~ and
ezdac~ objects only access the first two logical input and output channels in MSP.

The purpose of having both logical channels and physical device channels is to allow you to create
patches that use as many channels as you need without regard to the particular hardware configu-
ration you're using. For instance, some audio interfaces use physical device channels 1 and 2 for S/
PDIF input and output. If you don't happen to have a S/PDIF-compatible audio interface, you
may wish to use channels 8 and 9 instead. With MSP 1.x, you would have been required to change
all instances of dac~ and/or adc~ objects with arguments 1 and 2 to have arguments 8 and 9. With
MSP 2, this is no longer necessary. You can simply go to the DSP Status window and choose the
eighth and ninth physical channels listed in the Input and Output pop-up menus.

Logical channels in MSP are only created if there is a dac~ or adc~ object using them. In other
words, if you're only using logical outputs 1 and 2, there aren't 510 unused audio streams sitting
around hogging your CPU. However, since you can mix any number of logical channels to a single
physical channel if necessary, you can create a complex multi-channel setup that will allow other
people to hear all of your logical channels when they use it on a two-channel output device. To
 34

Audio I/O Audio input and output with MSP
assign multiple logical channels to one physical channel of an output device, use the I/O Mapping
window. Click on the I/O Mappings button at the bottom of the DSP Status window.

The configuration shows that logical channels 1, 3, 5, and 7 have been mapped to the left output
channel of the current audio device, and logical channels 2, 4, 6, and 8 have been mapped to the
right output channel of the current audio device.

I/O Mappings are saved for each audio driver. You can also create I/O mappings within your patch
using the adstatus object. The example patch below accomplishes the same remapping as that
shown in the I/O Mapping window above, but does so automatically when the patch is loaded.
35

Audio I/O Audio input and output with MSP
Using Core Audio on Macintosh

On Macintosh, MSP uses the Core Audio driver by default. As with all audio drivers, the Core
Audio object file must be located in a folder called ad which is placed in /Library/Application Sup-
port/Cycling '74/. Core Audio is available on all Macintoshes running Mac OS X 10.2 or later, and
provides Audio I/O to Macintosh applications from both the computer’s built-in audio hardware
as well as any external audio hardware you may have.

If you have external audio hardware, it should come the drivers to interface with Core Audio.
When these drivers are installed and the hardware is present, Core Audio will include the external
device as a Core Audio choice in the Driver menu in the DSP Status window.

The Sound part of the System Preferences application can be used to set basic sound settings for
the system, such as the Output volume, left/right balance, and sound output device, as well as the
Input volume and sound input device. You can also use the Audio MIDI Setup application
(located in /Applications/Utilities) for more detailed control of the sound I/O settings. Note that
modifications you make to the Sound section of the System Preferences application, such as
changing the output volume or balance, are reflected in the audio MIDI Setup (and vice versa).
 36

Audio I/O Audio input and output with MSP
You can open the Audio MIDI Setup application by clicking on the Open Audio Control Panel
button in the lower left corner of the DSP Status Window.

The Audio part of the Audio MIDI Setup application shows Input settings on the left side, and
Output settings on the right.

The System Settings let you choose which audio device is used for system audio input and output,
while the Selected Audio Device menu allows you to control the various settings for the built-in and
any external hardware audio devices.

When using external audio devices, the Input Volume and Output Volume sliders can be used to set
the overall input and output volumes of the selected device (they are not available when using the
built-in audio controller). The Device Mute checkboxes allow you to mute the input and output
devices, if applicable.

The Play Through checkbox just under the Input Volume slider lets you choose whether or not the
input device is ‘monitored’ directly through to the output. When playthrough is enabled, the dry
signal from the input source will play through to the output mixed in with any processed signal
you may be sending to the output in MSP. Disabling playthrough will enable you to control how
much (if any) dry signal from the audio input is routed to the output.
37

Audio I/O Audio input and output with MSP
This option can be changed in MSP on Macintosh by sending a message to the dsp object to
change it. Put the following in a message box and clicking on it will turn playthrough off:

; dsp driver playthrough 0

Using an argument of 1 will turn it on.

The Input Section allows you to select the Input Source (for example Line or Mic input for the
selected device) as well as the sampling rate and bit depth in the Current Format pop-up menu.
Similarly, the Output Section also allows you to select the sampling rate and bit-depth in its Cur-
rent Format pop-up menu. The available selections will vary, depending on your audio hardware.

You can set the volume levels for the individual audio input and output channels, mute individual
channels, and/or select them for playthrough using the controls located below the Current Format
menus. The lower part of the window is used to display the current input and output settings.

Using MME Audio and DirectSound on Windows

Three types of sound card drivers are supported in Windows —MME, DirectSound and ASIO.
Your choice of driver will have a significant impact on the performance and latency you will expe-
rience with MSP.

The MME driver (ad_mme) is the default used for output of Windows system sounds, and are
provided for almost any sound card and built-in audio system. While compatibility with your
hardware is almost guaranteed, the poor latency values you get from an MME driver make this the
least desirable option for real-time media operation.

DirectSound drivers, built on Microsoft’s DirectX technology, have become commonplace for
most sound cards, and provide much better latency and performance than MME drivers. When-
ever possible, a DirectSound driver (ad_directsound) should be used in preference to an MME
driver. Occasionally, (and especially in the case of motherboard-based audio systems) you will
find the DirectSound driver performs more poorly than the MME driver. This can happen when a
hardware-specific DirectSound driver is not available, and the system is emulating DirectSound
while using the MME driver. In these cases, it is best to use MME directly, or find an ASIO driver
for your system.

The best performance and lowest latency will typically be achieved using ASIO drivers. The ASIO
standard, developed by Steinberg and supported by many media-oriented sound cards, is opti-
mized for very low latency and high performance. As with the DirectSound driver, you need to
verify that performance is actually better than other options; occasionally, an ASIO driver will be a
simple “wrapper” around the MME or DirectSound driver, and will perform more poorly than
expected.

Using MME and DirectSound Drivers on with MSP on Windows

On Windows, MSP loads the MME driver by default. The MSP MME and DirectSound drivers
are located in C:\Program Files\Common Files\Cycling ‘74\ad\.
 38

Audio I/O Audio input and output with MSP
If you have correctly installed external hardware, it should support playback and recording with
the MME driver and the Direct Sound driver in the Driver Menu of the DSP Status Window.

If an audio device only supports MME or DirectSound, the Windows OS does an automatic map-
ping of one to the other. Since many audio devices initially did not support DirectSound,
Microsoft emulated DirectSound with a layer that bridged from DirectSound to MME. Currently,
there is greater support for native DirectSound drivers, and sometimes when you use MME driv-
ers Windows is actually running a layer to convert from MME to DirectSound.

Note: Some devices such as the Digidesign mBox only support the ASIO driver standard. In such
cases, you will need to select the proper ASIO driver in the DSP Status Window. See the section
“Using ASIO Drivers on Windows” for more information.

You can make overall changes to the basic operation of your default audio driver by accessing the
Sounds and Audio Devices Properties window (Start – Settings – Control Panel – Sounds and
Audio Devices). Here you can select Audio devices, and create settings for balance and output vol-
ume.
39

Audio I/O Audio input and output with MSP
MSP supports the use of different input and output devices with MME and DirectSound drivers.
Use the DSP Status Window to choose input and output devices.

Using ASIO on Windows

Selecting an ASIO driver from the DSP Status window allows MSP to talk directly to an audio
interface. To use ASIO soundcards your device needs to be correctly installed and connected; The
MSP ASIO driver will find it at startup.

All correctly installed ASIO devices should be available to you for selection in the DSP Status win-
dow. However, MSP does not check to see if the relevant audio interface hardware is installed cor-
rectly on your system until you explicitly switch to the ASIO driver for that interface card. If an
ASIO driver fails to load when you try to use it, an error message will appear in the Max window
(typically, an initialization error with a code of –1000) and the menus in the rest of the DSP Status
window will blank out. Switching to the MME and/or DirectSound driver will re-enable MSP
audio.

The Clock Source pop-up menu lets you to set the clock source for your audio hardware. Some
ASIO drivers do not support an external clock; if this is the case there will only be one option in
the menu, typically labeled Internal.

The Prioritize MIDI pop-up menu allows you to set the clock source for your audio hardware and
whether or not to prioritize MIDI input and output over audio I/O.

Many ASIO drivers have other settings you can edit in a separate window. Click the Open ASIO
Control Panel button at the bottom of the DSP Status window to access these settings. If your
interface card has a control panel in its ASIO driver, the documentation for the interface should
cover its operation.

Controlling ASIO Drivers with Messages to the dsp Object on Windows

Version 2 of the ASIO specification allows for direct monitoring of inputs to an audio interface. In
other words, you can patch audio inputs to the interface directly to audio outputs without having
the signals go through your computer. You also have control over channel patching, volume, and
pan settings.
 40

Audio I/O Audio input and output with MSP
To control direct monitoring, you send the monitor message to the dsp object. The monitor message
takes the following arguments

int Obligatory. A number specifying an input channel number (starting at 1)

int Optional. A number specifying an outlet channel number, or 0 to turn the rout-
ing for the specified input channel off. This is also what happens if the second
argument is not present.

int or float Optional. A number specifying the gain of the input -> output connection,
between 0 and 4. 1 represents unity gain (and is the default).

int or float Optional. A number specifying the panning of the output channel. -1 is left, 0 is
center, and 1 is right. 0 is the default.

Here are some examples of the monitor message:

; dsp driver monitor 1 1 Patches input 1 to output 1 at unity gain with center pan.

; dsp driver monitor 1 0 Turns off input 1

; dsp driver monitor 1 4 2. -1. patches input 1 to output 4 with 6dB gain panned to the
left

Note: When using these messages, the word “driver” is optional but recommended. Not all ASIO
drivers support this feature. If you send the monitor message and get an ASIO result error -998 mes-
sage in the Max window, then the driver does not support it.

 Another feature of ASIO 2 is the ability to start, stop, and read timecode messages. To start time-
code reading, send the following message:

; dsp driver timecode 1

To stop timecode reading, send the following message:

; dsp driver timecode 0

The plugsync~ object reports the sample position reported by the audio interface when you enable
timecode, but there isn't currently an object that reports the timecode of the interface.

Working in Non-Real Time with MSP

The MSP NonRealTime driver allows you to use MSP for synthesis and signal processing without
worrying about the constraints imposed by the speed of your computer's CPU. Non-real-time
mode simply calculates samples in MSP independently of any physical scheduling priority, allow-
ing you to process a vector of audio using a signal path that might take your computer more than
one vector's worth of real time to compute.
41

Audio I/O Audio input and output with MSP
Typically, you will want to use the dsptime~ object to see how long the audio has been turned on,
and you will pipe the output of your routine to sfrecord~ to capture the results. Hardware audio
input and output under the non-real-time driver are disabled.

A typical non-real-time signal path in MSP would look something like this:

Starting the DSP (by toggling the dac~ object) will start the dsptime~ object at 0 samples, in sync
with the playback of the audio out of sfplay~ and the recording of audio into the sfrecord~ at the
bottom of the patch. When five seconds have elapsed, the sfrecord~ object will stop recording the
output audio file.

See Also

adc~ Audio input and on/off
adstatus Access audio driver output channels
dac~ Audio output and on/off
ezadc~ Audio on/off; analog-to-digital converter
ezdac~ Audio output and on/off button
 42

Tutorial 1
Fundamentals: Test tone

To open the example program for each chapter of the Tutorial, choose Open... from the File menu
in Max and find the document in the MSP Tutorial folder with the same number as the chapter
you are reading. It’s best to have the current Tutorial example document be the only open Patcher
window.

• Open the file called Tutorial 01. Test tone.

MSP objects are pretty much like Max objects

MSP objects are for processing digital audio (i.e., sound) to be played by your computer. MSP
objects look just like Max objects, have inlets and outlets just like Max objects, and are connected
together with patch cords just like Max objects. They are created the same way as Max objects—
just by placing an object box in the Patcher window and typing in the desired name—and they
co-exist quite happily with Max objects in the same Patcher window.

...but they’re a little different

A patch of interconnected MSP objects works a little differently from the way a patch of standard
Max objects works.

One way to think of the difference is just to think of MSP objects as working much faster than
ordinary Max objects. Since MSP objects need to produce enough numbers to generate a high
fidelity audio signal (commonly 44,100 numbers per second), they must work faster than the mil-
lisecond schedule used by standard Max objects.

Here’s another helpful way to think of the difference. Think of a patch of MSP objects not as a pro-
gram in which events occur at specific instants (as in a standard Max patch), but rather as a
description of an instrument design—a synthesizer, sampler, or effect processor. It’s like a mathe-
matical formula, with each object constantly providing numerical values to the object(s) con-
nected to its outlet. At any given instant in time, this formula has a result, which is the
instantaneous amplitude of the audio signal. This is why we frequently refer to an ensemble of
inter-connected MSP objects as a signal network.

So, whereas a patch made up of standard Max objects sits idle and does nothing until something
occurs (a mouse click, an incoming MIDI message, etc.) causing one object to send a message to
another object, a signal network of MSP objects, by contrast, is always active (from the time it’s
turned on to the time it’s turned off), with all its objects constantly communicating to calculate the
appropriate amplitude for the sound at that instant.
43

Tutorial 1 Fundamentals: Test tone
...so they look a little different

The names of all MSP objects end with the tilde character (~). This character, which looks like a
cycle of a sine wave, just serves as an indicator to help you distinguish MSP objects from other
Max objects.

The patch cords between MSP objects have stripes. This helps you distinguish the MSP signal net-
work from the rest of the Max patch.

MSP objects are connected by striped patch cords

Digital-to-analog converter: dac~

The digital-to-analog converter (DAC) is the part of your computer that translates the stream of
discrete numbers in a digital audio signal into a continuous fluctuating voltage which will drive
your loudspeaker.

Once you have calculated a digital signal to make a computer-generated sound, you must send the
numbers to the DAC. So, MSP has an object called dac~, which generally is the terminal object in
any signal network. It receives, as its input, the signal you wish to hear. It has as many inlets as there
are available channels of audio playback. If you are using Core Audio (or WWWW on Windows)
to play sounds directly from your computer’s audio hardware, there are two output channels, so
there will be two inlets to dac~. (If you are using more elaborate audio output hardware, you can
type in an argument to specify other audio channels.)

dac~ plays the signal

Important! dac~ must be receiving a signal of non-zero amplitude in order for you to hear any-
thing. dac~ expects to receive signal values in the range -1.0 to 1.0. Numbers that exceed that
range will cause distortion when the sound is played.

Wavetable synthesis: cycle~

The best way to produce a periodic waveform is with cycle~. This object uses the technique known
as “wavetable synthesis”. It reads through a list of 512 values at a specified rate, looping back to the
beginning of the list when it reaches the end. This simulates a periodically repeating waveform.

You can direct cycle~ to read from a list of values that you supply (in the form of an audio file), or if
you don’t supply one, it will read through its own table which represents a cycle of a cosine wave
 44

Tutorial 1 Fundamentals: Test tone
with an amplitude of 1. We’ll show you how to supply your own waveform in Tutorial 3. For now
we’ll use the cosine waveform.

Graph of 512 numbers describing one cycle of a cosine wave with amplitude 1

cycle~ receives a frequency value (in Hz) in its left inlet, and it determines on its own how fast it
should read through the list in order to send out a signal with the desired frequency.

By default cycle~ has a frequency of 0 Hz. So in order to hear the signal, we need to supply an audi-
ble frequency value. This can be done with a number argument as in the example patch, or by
sending a number in the left inlet, or by connecting another MSP object to the left inlet.

Starting and stopping signal processing

The way to turn audio on and off is by sending the Max messages start and stop (or 1 and 0) to the
left inlet of a dac~ object (or an adc~ object, discussed in a later chapter). Sending start or stop to
any dac~ or adc~ object enables or disables processing for all signal networks.

The simplest possible signal network

Technical detail: To figure out how far to step through the list for each consecutive sample,
cycle~ uses the basic formula

I=ƒL/R

where I is the amount to increment through the list, ƒ is the signal’s frequency, L is the length of
the list (512 in this case), and R is the audio sampling rate. cycle~ is an “interpolating oscilla-
tor”, which means that if I does not land exactly on an integer index in the list for a given sam-
ple, cycle~ interpolates between the two closest numbers in the list to find the proper output
value. Performing interpolation in a wavetable oscillator makes a substantial improvement in
audio quality. The cycle~ object uses linear interpolation, while other MSP objects use very
high-quality (and more computationally expensive) polynomial interpolation.
45

Tutorial 1 Fundamentals: Test tone
Although dac~ is part of a signal network, it also understands certain Max messages, such as start
and stop. Many of the MSP objects function in this manner, accepting certain Max messages as
well as audio signals.

Listening to the Test Tone

The first time you start up Max/MSP, it will try to use your computer's default sound card and
driver (Core Audio on Macintosh or MME on Windows) for audio input and output. If you have
the audio output of your computer connected to headphones or an amplifier, you should hear the
output of MSP through it. If you don't have an audio cable connected to your computer, you'll
hear the sound through the computer's internal speaker.

In order to get MSP up and running properly, we recommend that you start the tutorials using
your computer’s built-in sound hardware. If you want to use an external audio interface or sound
care, please refer to the Audio Input and Output chapter for details on configuring MSP to work
with audio hardware.

• Set your audio amplifier (or amplified speakers) to their minimum setting, then click on the
start message box. Adjust your audio amplifier to the desired maximum setting, then click on
the stop message box to turn off that annoying test tone.

Troubleshooting

If you don't hear any sound coming from your computer when you start the dac~ in this example,
check the level setting on your amplifier or mixer, and check all your audio connections. Check
that the sound output isn't currently muted. On Macintosh, the sound output level is set using the
Sound preferences in the System Preferences application. On Windows, the sound output level is
set using the Sounds and Audio Devices setup (Start - Control Panels - Sounds and Audio
Devices).

If you are still are not hearing anything, choose DSP Status from the Options Menu and verify that
Core Audio Built in Controller for Macintosh or MME driver for Windows is selected in the
Driver pop-up menu. If it isn't, choose it.

Summary

A signal network of connected MSP objects describes an audio instrument. The digital-to-analog
converter of the instrument is represented by the dac~ object; dac~ must be receiving a signal of
non-zero amplitude (in the range -1.0 to 1.0) in order for you to hear anything. The cycle~ object
is a wavetable oscillator which reads cyclically through a list of 512 amplitude values, at a rate
 46

Tutorial 1 Fundamentals: Test tone
determined by the supplied frequency value. Signal processing is turned on and off by sending a
start or stop message to any dac~ or adc~ object.

• Close the Patcher window before proceeding to the next chapter.

See Also

cycle~ Table lookup oscillator
dac~ Audio output and on/off
Audio I/O Audio input and output with MSP
47

Tutorial 2
Fundamentals: Adjustable oscillator

Amplifier: *~

A signal you want to listen to—a signal you send to dac~—must be in the amplitude range from
-1.0 to +1.0. Any values exceeding those bounds will be clipped off by dac~ (i.e. sharply limited to
1 or -1). This will cause (in most cases pretty objectionable) distortion of the sound. Some
objects, such as cycle~, output values in that same range by default.

The default output of cycle~ has amplitude of 1

To control the level of a signal you simply multiply each sample by a scaling factor. For example, to
halve the amplitude of a signal you simply multiply it by 0.5. (Although it would be mathemati-
cally equivalent to divide the amplitude of the signal by 2, multiplication is a more efficient com-
putation procedure than division.

Amplitude adjusted by multiplication

If we wish to change the amplitude of a signal continuously over time, we can supply a changing
signal in the right inlet of *~. By continuously changing the value in the right inlet of *~, we can
fade the sound in or out, create a crescendo or diminuendo effect, etc. However, a sudden drastic
48

Tutorial 2 Fundamentals: Adjustable oscillator
change in amplitude would cause a discontinuity in the signal, which would be heard as a noisy
click.

Instantaneous change of amplitude causes a noisy distortion of the signal

For that reason it’s usually better to modify the amplitude using a signal that changes more gradu-
ally with each sample, say in a straight line over the course of several milliseconds.

Line segment generator: line~

If, instead of an instantaneous change of amplitude (which can cause an objectionable distortion
of the signal), we supply a signal in the right inlet of *~ that changes from 1.0 to 0.5 over the course
of 5 milliseconds, we interpolate between the starting amplitude and the target amplitude with
each sample, creating a smooth amplitude change.

Linear amplitude change over 5 milliseconds using line~
49

Tutorial 2 Fundamentals: Adjustable oscillator
The line~ object functions similarly to the Max object line. In its left inlet it receives a target value
and a time (in ms) to reach that target. line~ calculates the proper intermediate value for each
sample in order to change in a straight line from its current value to the target value.

An eightfold (18 dB) increase in 5 ms creates a percussive effect

Adjustable oscillator

The example patch uses this combination of *~ and line~ to make an adjustable amplifier for scal-
ing the amplitude of the oscillator. The pack object appends a transition time to the target ampli-

Technical detail: Any change in the over-all amplitude of a signal introduces some amount of
distortion during the time when the amplitude is changing. (The shape of the waveform is
actually changed during that time, compared with the original signal.) Whether this distortion
is objectionable depends on how sudden the change is, how great the change in amplitude is,
and how complex the original signal is. A small amount of such distortion introduced into an
already complex signal may go largely unnoticed by the listener. Conversely, even a slight dis-
tortion of a very pure original signal will add partials to the tone, thus changing its timbre.

In the preceding example, the amplitude of a sinusoidal tone decreased by half (6 dB) in 5 mil-
liseconds. Although one might detect a slight change of timbre as the amplitude drops, the shift
is not drastic enough to be heard as a click. If, on the other hand, the amplitude of a sinusoid
increases eightfold (18 dB) in 5 ms, the change is drastic enough to be heard as a percussive
attack
 50

Tutorial 2 Fundamentals: Adjustable oscillator
tude value, so every change of amplitude will take 100 milliseconds. A number box for changing
the frequency of the oscillator has also been included.

Oscillator with adjustable frequency and amplitude

Notice that the signal network already has default values before any Max message is sent to it. The
cycle~ object has a specified frequency of 1000 Hz, and the line~ object has a default initial value
of 0. Even if the *~ had a typed-in argument for initializing its right inlet, its right operand would
still be 0 because line~ is constantly supplying it that value.

• Use the Amplitude number box to set the volume to the level you desire, then click on the toggle
marked Audio On/Off to start the sound. Use the number box objects to change the frequency
and amplitude of the tone. Click on the toggle again to turn the sound off.

Fade In and Fade Out

The combination of line~ and *~ also helps to avoid the clicks that can occur when the audio is
turned on and off. The 1 and 0 “on” and “off ” messages from the toggle are used to fade the volume
51

Tutorial 2 Fundamentals: Adjustable oscillator
up to the desired amplitude, or down to 0, just as the start or stop message is sent to dac~. In that
way, the sound is faded in and out gently rather than being turned on instantaneously.

On and off messages fade audio in or out before starting or stopping the DAC

Just before turning audio off, the 0 from toggle is sent to the pack object to start a 100 ms fade-out
of the oscillator’s volume. A delay of 100 ms is also introduced before sending the stop message to
dac~, in order to let the fade-out occur. Just before turning the audio on, the desired amplitude
value is triggered, beginning a fade-in of the volume; the fade-in does not actually begin, however,
until the dac~ is started—immediately after, in this case. (In an actual program, the start and stop
message boxes might be hidden from view or encapsulated in a subpatch in order to prevent the
user from clicking on them directly.)

Summary

Multiplying each sample of an audio signal by some number other than 1 changes its amplitude;
therefore the *~ object is effectively an amplifier. A sudden drastic change of amplitude can cause a
click, so a more gradual fade of amplitude—by controlling the amplitude with another signal—is
usually advisable. The line segment signal generator line~ is comparable to the Max object line
and is appropriate for providing a linearly changing value to the signal network. The combination
of line~ and *~ can be used to make an envelope for controlling the over-all amplitude of a signal.

See Also

cycle~ Table lookup oscillator
dac~ Audio output and on/off
line~ Linear ramp generator
 52

Tutorial 3
Fundamentals: Wavetable oscillator

Audio on/off switch: ezdac~

In this tutorial patch, the dac~ object which was used in earlier examples has been replaced by a
button with a speaker icon. This is the ezdac~ object, a user interface object available in the object
palette.

ezdac~ is an on/off button for audio, available in the object palette

The ezdac~ works much like dac~, except that clicking on it turns the audio on or off. It can also
respond to start and stop messages in its left inlet, like dac~. (Unlike dac~, however, it is appropriate
only for output channels 1 and 2.) The ezdac~ button is highlighted when audio is on.

A stored sound: buffer~

In the previous examples, the cycle~ object was used to read repeatedly through 512 values
describing a cycle of a cosine wave. In fact, though, cycle~ can read through any 512 values, treat-
ing them as a single cycle of a waveform. These 512 numbers must be stored in an object called
buffer~. (A buffer means a holding place for data.)

A buffer~ object requires a unique name typed in as an argument. A cycle~ object can then be
made to read from that buffer by typing the same name in as its argument. (The initial frequency
value for cycle~, just before the buffer name, is optional.)

cycle~ reads its waveform from a buffer~ of the same name

To get the sound into the buffer~, send it a read message. That opens an Open Document dialog
box, allowing you to select an audio file to load. The word read can optionally be followed by a spe-
53

Tutorial 3 Fundamentals: Wavetable oscillator
cific file name, to read a file in without selecting it from the dialog box, provided that the audio file
is in Max’s search path.

Read in a specific sound immediately

Regardless of the length of the sound in the buffer~, cycle~ uses only 512 samples from it for its
waveform. (You can specify a starting point in the buffer~ for cycle~ to begin its waveform, either
with an additional argument to cycle~ or with a set message to cycle~.) In the example patch, we
use an audio file that contains exactly 512 samples.

• Click on the message box that says read gtr512.aiff. This loads in the audio file. Then click on the
ezdac~ object to turn the audio on. (There will be no sound at first. Can you explain why?)
Next, click on the message box marked B3 to listen to 1 second of the cycle~ object.

There are several other objects that can use the data in a buffer~, as you will see in later chapters.

Create a breakpoint line segment function with line~

In the previous example patch, we used line~ to make a linearly changing signal by sending it a list
of two numbers. The first number in the list was a target value and the second was the amount of
time, in milliseconds, for line~ to arrive at the target value.

line~ is given a target value (1.) and an amount of time to get there (100 ms)

If we want to, we can send line~ a longer list containing many value-time pairs of numbers (up to
64 pairs of numbers). In this way, we can make line~ perform a more elaborate function com-
posed of many adjoining line segments. After completing the first line segment, line~ proceeds

Technical detail: In fact, cycle~ uses 513 samples. The 513th sample is used only for interpola-
tion from the 512th sample. When cycle~ is being used to create a periodic waveform, as in this
example patch, the 513th sample should be the same as the 1st sample. If the buffer~ contains
only 512 samples, as in this example, cycle~ supplies a 513th sample that is the same as the 1st
sample.
 54

Tutorial 3 Fundamentals: Wavetable oscillator
immediately toward the next target value in the list, taking the specified amount of time to get
there.

A function made up of line segments

Synthesizer users are familiar with using this type of function to generate an “ADSR” amplitude
envelope. That is what we’re doing in this example patch, although we can choose how many line
segments we wish to use for the envelope.

Other signal generators: phasor~ and noise~

The phasor~ object produces a signal that ramps repeatedly from 0 to 1.

Signal produced by phasor~

The frequency with which it repeats this ramp can be specified as an argument or can be provided
in the left inlet, in Hertz, just as with cycle~. This type of function is useful at sub-audio frequen-
cies to generate periodically recurring events (a crescendo, a filter sweep, etc.). At a sufficiently
55

Tutorial 3 Fundamentals: Wavetable oscillator
high frequency, of course, it is audible as a sawtooth waveform. In the example patch, the phasor~
is pitched an octave above cycle~, and its output is scaled and offset so that it ramps from -1 to +1.

 220 Hz sawtooth wave

The noise~ object produces white noise: a signal that consists of a completely random stream of
samples. In this example patch, it is used to add a short burst of noise to the attack of a composite
sound.

• Click on the message box marked B1 to hear white noise. Click on the message box marked B2
to hear a sawtooth wave.

Add signals to produce a composite sound

Any time two or more signals are connected to the same signal inlet, those signals are added
together and their sum is used by the receiving object.

Multiple signals are added (mixed) in a signal inlet

Addition of digital signals is equivalent to unity gain mixing in analog audio. It is important to
note that even if all your signals have amplitude less than or equal to 1, the sum of such signals can
easily exceed 1. In MSP it’s fine to have a signal with an amplitude that exceeds 1, but before send-
ing the signal to dac~ you must scale it (usually with a *~ object) to keep its amplitude less than or
equal to 1. A signal with amplitude greater than 1 will be distorted by dac~.

Technical detail: A sawtooth waveform produces a harmonic spectrum, with the amplitude of
each harmonic inversely proportional to the harmonic number. Thus, if the waveform has
amplitude A, the fundamental (first harmonic) has amplitude A, the second harmonic has
amplitude A/2, the third harmonic has amplitude A/3, etc.
 56

Tutorial 3 Fundamentals: Wavetable oscillator
In the example patch, white noise, a 220 Hz sawtooth wave, and a 110 Hz tone using the waveform
in buffer~ are all mixed together to produce a composite instrument sound.

Three signals mixed to make a composite instrument sound

Each of the three tones has a different amplitude envelope, causing the timbre of the note to evolve
over the course of its 1-second duration. The three tones combine to form a note that begins with
noise, quickly becomes electric-guitar-like, and gets a boost in its overtones from the sawtooth
wave toward the end. Even though the three signals crossfade, their amplitudes are such that there
is no possibility of clipping (except, possibly, in the very earliest milliseconds of the note, which
are very noisy anyway).

• Click on the button to play all three signals simultaneously. To hear each of the individual parts
that comprise the note, click on the message boxes marked A1, A2, and A3. If you want to hear
how each of the three signals sound sustained at full volume, click on the message boxes
marked B1, B2, and B3. When you have finished, click on ezdac~ to turn the audio off.

Summary

The ezdac~ object is a button for switching the audio on and off. The buffer~ object stores a
sound. You can load an audio file into buffer~ with a read message, which opens an Open Docu-
ment dialog box for choosing the file to load in. If a cycle~ object has a typed-in argument which
gives it the same name as a buffer~ object has, the cycle~ will use 512 samples from that buffered
sound as its waveform, instead of the default cosine wave.

The phasor~ object generates a signal that increases linearly from 0 to 1. This ramp from 0 to 1 can
be generated repeatedly at a specific frequency to produce a sawtooth wave. For generating white
noise, the noise~ object sends out a signal consisting of random samples.

Whenever you connect more than one signal to a given signal inlet, the receiving object adds those
signals together and uses the sum as its input in that inlet. Exercise care when mixing (adding)
57

Tutorial 3 Fundamentals: Wavetable oscillator
audio signals, to avoid distortion caused by sending a signal with amplitude greater than 1 to the
DAC; signals must be kept in the range -1 to +1 when sent to dac~ or ezdac~.

The line~ object can receive a list in its left inlet that consists of up to 64 pairs of numbers repre-
senting target values and transition times. It will produce a signal that changes linearly from one
target value to another in the specified amounts of time. This can be used to make a function of
line segments describing any shape desired, which is particularly useful as a control signal for
amplitude envelopes. You can achieve crossfades between signals by using different amplitude
envelopes from different line~ objects.

See Also

buffer~ Store audio samples
ezdac~ Audio output and on/off button
phasor~ Sawtooth wave generator
noise~ White noise generator
 58

Tutorial 4
Fundamentals: Routing signals

Remote signal connections: send~ and receive~

The patch cords that connect MSP objects look different from normal patch cords because they
actually do something different. They describe the order of calculations in a signal network. The
connected objects will be used to calculate a whole block of samples for the next portion of sound.

Max objects can communicate remotely, without patch cords, with the objects send and receive
(and some similar objects such as value and pv). You can transmit MSP signals remotely with send
and receive, too, but the patch cord(s) coming out of receive will not have the yellow-and-black
striped appearance of the signal network (because a receive object doesn’t know in advance what
kind of message it will receive). Two MSP objects exist specifically for remote transmission of sig-
nals: send~ and receive~.

send and receive for Max messages; send~ and receive~ for signals

The two objects send~ and receive~ work very similarly to send and receive, but are only for use
with MSP objects. Max will allow you to connect normal patch cords to send~ and receive~, but
only signals will get passed through send~ to the corresponding receive~. The MSP objects send~
and receive~ don’t transmit any Max messages besides signals.

There are a few other important differences between the Max objects send and receive and the
MSP objects send~ and receive~.

1. The names of send and receive can be shortened to s and r; the names of send~ and receive~
cannot be shortened in the same way.

2. A Max message can be sent to a receive object from several other objects besides send, such as
float, forward, grab, if, int, and message; receive~ can receive a signal only from a send~ object
that shares the same name.

3. If receive has no typed-in argument, it has an inlet for receiving set messages to set or change
its name; receive~ also has an inlet for that purpose, but is nevertheless required to have a
typed-in argument.
59

Tutorial 4 Fundamentals: Routing signals
4. Changing the name of a receive object with a set message is a useful way of dynamically redi-
recting audio signals. Changing the name of receive~, however, does not redirect the signal
until you turn audio off and back on again.

Examples of each of these usages can be seen in the tutorial patch.

Routing a signal: gate~

The MSP object gate~ works very similarly to the Max object gate. Just as gate is used to direct
messages to one of several destinations, or to shut the flow of messages off entirely, gate~ directs a
signal to different places, or shuts it off from the rest of the signal network.

In the example patch, the gate~ objects are used to route signals to the left audio output, the right
audio output, both, or neither, according to what number is received from the umenu object.

gate~ sends a signal to a chosen location

It is worth noting that changing the chosen outlet of a gate~ while an audio signal is playing
through it can cause an audible click because the signal shifts abruptly from one outlet to another.
To avoid this, you should generally design your patch in such a way that the gate~ object’s outlet
will only be changed when the audio signal going through it is at zero or when audio is off. (No
such precaution was taken in the tutorial patch.)

Wave interference

It’s a fundamental physical fact that when we add together two sinusoidal waves with different fre-
quencies we create interference between the two waves. Since they have different frequencies, they
will usually not be exactly in phase with each other; so, at some times they will be sufficiently in
phase that they add together constructively, but at other times they add together destructively,
canceling each other out to some extent. They only arrive precisely in phase with each other at a
rate equal to the difference in their frequencies. For example, a sinusoid at 1000 Hz and another at
1002 Hz come into phase exactly 2 times per second. In this case, they are sufficiently close in fre-
quency that we don’t hear them as two separate tones. Instead, we hear their recurring pattern of
constructive and destructive interference as beats occurring at a sub-audio rate of 2 Hz, a rate
known as the difference frequency or beat frequency. (Interestingly, we hear the two waves as a single
tone with a sub-audio beat frequency of 2 Hz and an audio frequency of 1001 Hz.)

When the example patch is opened, a loadbang object sends initial frequency values to the cycle~
objects—1000 Hz and 1002 Hz—so we expect that these two tones sounded together will cause a
beat frequency of 2 Hz. It also sends initial values to the gate~ objects (passing through the
 60

Tutorial 4 Fundamentals: Routing signals
umenus on the way) which will direct one tone to the left audio output and one to the right audio
output.

The two waves interfere at a rate of 2 Hz

• Click on ezdac~ to turn audio on, then use the uslider marked “Volume” to adjust the loudness
of the sound to a comfortable level. Note that the beats occur exactly twice per second. Try
changing the frequency of Oscillator B to various other numbers close to 1000, and note the
effect. As the difference frequency approaches an audio rate (say, in the range of 20-30 Hz)
you can no longer distinguish individual beats, and the effect becomes more of a timbral
change. Increase the difference still further, and you begin to hear two distinct frequencies.

Philosophical tangent: It can be shown mathematically and empirically that when two sinusoi-
dal tones are added, their interference pattern recurs at a rate equal to the difference in their
frequencies. This apparently explains why we hear beats; the amplitude demonstrably varies at
the difference rate. However, if you listen to this patch through headphones—so that the two
tones never have an opportunity to interfere mathematically, electrically, or in the air—you
still hear the beats! This phenomenon, known as binaural beats is caused by “interference”
occurring in the nervous system. Although such interference is of a very different physical
nature than the interference of sound waves in the air, we experience it as similar. An experi-
ment like this demonstrates that our auditory system actively shapes the world we hear.
61

Tutorial 4 Fundamentals: Routing signals
Amplitude and relative amplitude

The uslider marked “Volume” has been set to have a range of 101 values, from 0 to 100, which
makes it easy to convert its output to a float ranging from 0 to 1 just by dividing by 100. (The deci-
mal point in argument typed into the / object ensures a float division.)

A volume fader is made by converting the int output of uslider to a float from 0. to 1.

The *~ objects use the specified amplitude value to scale the audio signal before it goes to the
ezdac~. If both oscillators get sent to the same inlet of ezdac~, their combined amplitude will be 2.
Therefore, it is prudent to keep the amplitude scaling factor at or below 0.5. For that reason, the
amplitude value—which the user thinks of as being between 0 and 1—is actually kept between 0
and 0.5 by the * 0.5 object.

The amplitude is halved in case both oscillators are going to the same output channel

Because of the wide range of possible audible amplitudes, it may be more meaningful in some
cases to display volume numerically in terms of the logarithmic scale of decibels (dB), rather than
in terms of absolute amplitude. The decibel scale refers to relative amplitude—the amplitude of a
signal relative to some reference amplitude. The formula for calculating amplitude in decibels is

dB = 20(log10(A/Aref))

where A is the amplitude being measured and Aref is a fixed reference amplitude.
 62

Tutorial 4 Fundamentals: Routing signals
The subpatch AtodB uses a reference amplitude of 1 in the formula shown above, and converts the
amplitude to dB.

The contents of the subpatch AtodB

Since the amplitude received from the uslider will always be less than or equal to 1, the output of
AtodB will always be less than or equal to 0 dB. Each halving of the amplitude is approximately
equal to a 6 dB reduction.

AtodB reports amplitude in dB, relative to a reference amplitude of 1

• Change the position of the uslider and compare the linear amplitude reading to the logarith-
mic decibel scale reading.

Constant signal value: sig~

Most signal networks require some changing values (such as an amplitude envelope to vary the
amplitude over time) and some constant values (such as a frequency value to keep an oscillator at
a steady pitch). In general, one provides a constant value to an MSP object in the form of a float
message, as we have done in these examples when sending a frequency in the left inlet of a cycle~
object.

However, there are some cases when one wants to combine both constant and changing values in
the same inlet of an MSP object. Most inlets that accept either a float or a signal (such as the left inlet
of cycle~) do not successfully combine the two. For example, cycle~ ignores a float in its left inlet if
it is receiving a signal in the same inlet.

cycle~ ignores its argument or a float input when a signal is connected to the left inlet
63

Tutorial 4 Fundamentals: Routing signals
One way to combine a numerical Max message (an int or a float) with a signal is to convert the
number into a steady signal with the sig~ object. The output of sig~ is a signal with a constant
value, determined by the number received in its inlet.

sig~ converts a float to a signal so it can be combined with another signal

In the example patch, Oscillator B combines a constant frequency (supplied as a float to sig~) with
a varying frequency offset (an additional signal value). The sum of these two signals will be the
frequency of the oscillator at any given instant.

Changing the phase of a waveform

For the most part, the phase offset of an isolated audio wave doesn’t have a substantial effect per-
ceptually. For example, a sine wave in the audio range sounds exactly like a cosine wave, even
though there is a theoretical phase difference of a quarter cycle. For that reason, we have not been
concerned with the rightmost phase inlet of cycle~ until now.

A sine wave offset by a quarter cycle is a cosine wave

However, there are some very useful reasons to control the phase offset of a wave. For example, by
leaving the frequency of cycle~ at 0, and continuously increasing its phase offset, you can change
its instantaneous value (just as if it had a positive frequency). The phase offset of a sinusoid is usu-
ally referred to in degrees (a full cycle is 360°) or radians (a full cycle is 2π radians). In the cycle~
object, phase is referred to in wave cycles; so an offset of π radians is 1/2 cycle, or 0.5. In other
words, as the phase varies from 0 to 2π radians, it varies from 0 to 1 wave cycles. This way of
describing the phase is handy since it allows us to use the common signal range from 0 to 1.
 64

Tutorial 4 Fundamentals: Routing signals
So, if we vary the phase offset of a stationary (0 Hz) cycle~ continuously from 0 to 1 over the
course of one second, the resulting output is a cosine wave with a frequency of 1 Hz.

The resulting output is a cosine wave with a frequency of 1 Hz

Incidentally, this shows us how the phasor~ object got its name. It is ideally suited for continuously
changing the phase of a cycle~ object, because it progresses repeatedly from 0 to 1. If a phasor~ is
connected to the phase inlet of a 0 Hz cycle~, the frequency of the phasor~ will determine the rate
at which the cycle~ object’s waveform is traversed, thus determining the effective frequency of the
cycle~.

The effective frequency of the 0 Hz cycle~ is equal to the rate of the phasor~

The important point demonstrated by the tutorial patch, however, is that the phase inlet can be
used to read through the 512 samples of cycle~ object’s waveform at any desired rate. (In fact, the
contents of cycle~ can be scanned at will with any value in the range 0 to 1.) In this case, line~ is
used to change the phase of cycle~ from .75 to 1.75 over the course of 10 seconds.

The result is one cycle of a sine wave. The sine wave is multiplied by a “depth” factor to scale its
amplitude up to 8. This sub-audio sine wave, varying slowly from 0 up to 8, down to -8 and back
to 0, is added to the frequency of Oscillator B. This causes the frequency of Oscillator B to fluctu-
ate very slowly between 1008 Hz and 992 Hz.

• Click on the message box in the lower-left part of the window, and notice how the beat fre-
quency varies sinusoidally over the course of 10 seconds, from 0 Hz up to 8 Hz (as the fre-
65

Tutorial 4 Fundamentals: Routing signals
quency of Oscillator B approaches 1008 Hz), back to 0 Hz, back up to 8 Hz (as the frequency
of Oscillator B approaches 992 Hz), and back to 0 Hz.

Receiving a different signal

The remaining portion of the tutorial patch exists simply to demonstrate the use of the set message
to the receive~ object. This is another way to alter the signal flow in a network. With set, you can
change the name of the receive~ object, which causes receive~ to get its input from a different
send~ object (or objects).

Giving receive~ a new name changes its input

• Click on the message box containing set sawtooth. Both of the connected receive~ objects now
get their signal from the phasor~ in the lower-right corner of the window. Click on the message
boxes containing set outL and set outR to receive the sinusoidal tones once again. Click on
ezdac~ to turn audio off.

Summary

It is possible to make signal connections without patch cords, using the MSP objects send~ and
receive~, which are similar to the Max objects send and receive. The set message can be used to
change the name of a receive~ object, thus switching it to receive its input from a different send~
object (or objects). Signal flow can be routed to different destinations, or shut off entirely, using
the gate~ object, which is the MSP equivalent of the Max object gate.

The cycle~ object can be used not only for periodic audio waves, but also for sub-audio control
functions: you can read through the waveform of a cycle~ object at any rate you wish, by keeping
its frequency at 0 Hz and changing its phase continuously from 0 to 1. The line~ object is appro-
priate for changing the phase of a cycle~ waveform in this way, and phasor~ is also appropriate
because it goes repeatedly from 0 to 1.

The sig~ object converts a number to a constant signal; it receives a number in its inlet and sends
out a signal of that value. This is useful for combining constant values with varying signals. Mix-
ing together tones with slightly different frequencies creates interference between waves, which can
create beats and other timbral effects.
 66

Tutorial 4 Fundamentals: Routing signals
See Also

gate~ Route a signal to one of several outlets
receive~ Receive signals without patch cords
send~ Transmit signals without patch cords
sig~ Constant signal of a number
67

Tutorial 5
Fundamentals: Turning signals on and off

Turning audio on and off selectively

So far we have seen two ways that audio processing can be turned on and off:

1. Send a start or stop message to a dac~, adc~, ezdac~, or ezadc~ object.

2, Click on a ezdac~ or ezadc~ object.

There are a couple of other ways we have not yet mentioned:

3. Send an int to a dac~, adc~, ezdac~, or ezadc~ object. 0 is the same as stop, and a non-zero num-
ber is the same as start.

4. Double-click on a dac~ or adc~ object to open the DSP Status window, then use its Audio on/
off pop-up menu. You can also choose DSP Status… from the Options menu to open the
DSP Status window.

Any of those methods of starting MSP will turn the audio on in all open Patcher windows and
their subpatches. There is also a way to turn audio processing on and off in a single Patcher.

Sending the message startwindow—instead of start—to a dac~, adc~, ezdac~, or ezadc~ object turns
the audio on only in the Patcher window that contains that object, and in its subpatches. It turns
audio off in all other Patchers. The startwindow message is very useful because it allows you to have
many different signal networks loaded in different Patchers, yet turn audio on only in the Patcher
that you want to hear. If you encapsulate different signal networks in separate patches, you can
have many of them loaded and available but only turn on one at a time, which helps avoid overtax-
ing your computer’s processing power. (Note that startwindow is used in all MSP help files so that
you can try the help file’s demonstration without hearing your other work at the same time.)

In some cases startwindow is more appropriate than start

Selecting one of several signals: selector~

In the previous chapter, we saw the gate~ object used to route a signal to one of several possible
destinations. Another useful object for routing signals is selector~, which is comparable to the
Max object switch. Several different signals can be sent into selector~, but it will pass only one of
68

Tutorial 5 Fundamentals: Turning signals on and off
them—or none at all—out its outlet. The left inlet of selector~ receives an int specifying which of
the other inlets should be opened. Only the signal coming in the opened inlet gets passed on out
the outlet.

The number in the left inlet determines which other inlet is open

As with gate~, switching signals with selector~ can cause a very abrupt change in the signal being
sent out, resulting in unwanted clicks. So if you want to avoid such clicks it’s best to change the
open inlet of selector~ only when audio is off or when all of its input signal levels are 0.

In the tutorial patch, selector~ is used to choose one of four different classic synthesizer wave
types: sine, sawtooth, triangle, or square. The umenu contains the names of the wave types, and
sends the correct number to the control inlet of selector~ to open the desired inlet.

• Choose a wave type from the pop-up menu, then click on the startwindow message. Use the
pop-up menu to listen to the four different waves. Click on the stop message to turn audio off.

Note that the waveforms in this patch are ideal shapes, not band-limited versions. That is to say,
there is nothing limiting the high frequency content of the tones. For the richer tones such as the
sawtooth and pulse waves, the upper partials can easily exceed the Nyquist rate and be folded back
into the audible range. The partials that are folded over will not belong to the intended spectrum,
and the result will be an inharmonic spectrum. As a case in point, if we play an ideal square wave at
2,500 Hz, only the first four partials can be accurately represented with a sampling rate of 44.1
kHz. The frequencies of the other partials exceed the Nyquist rate of 22,050 Hz, and they will be
folded over back into the audible range at frequencies that are not harmonically related to the fun-
damental. For example, the eighth partial (the 15th harmonic) has a frequency of 37,500 Hz, and
will be folded over and heard as 6,600 Hz, a frequency that is not a harmonic of 2,500. (And its

Technical detail: A sawtooth wave contains all harmonic partials, with the amplitude of each
partial proportional to the inverse of the harmonic number. If the fundamental (first har-
monic) has amplitude A, the second harmonic has amplitude A/2, the third harmonic has
amplitude A/3, etc. A square wave contains only odd numbered harmonics of a sawtooth spec-
trum. A triangle wave contains only odd harmonics of the fundamental, with the amplitude of
each partial proportional to the square of the inverse of the harmonic number. If the funda-
mental has amplitude A, the third harmonic has amplitude A/9, the fifth harmonic has ampli-
tude A/25, etc.
69

Tutorial 5 Fundamentals: Turning signals on and off
amplitude is only about 24 dB less than that of the fundamental.) Other partials of the square wave
will be similarly folded over.

Partials that exceed the Nyquist frequency are folded over

• Choose the square wave from the pop-up menu, and set the frequency to 2500 Hz. Turn audio
on. Notice that some of the partials you hear are not harmonically related to the fundamental.
If you move the frequency up further, the folded-over partials will go down by the same
amount. Turn audio off.

Turning off part of a signal network: begin~

You have seen that the selector~ and gate~ objects can be used to listen selectively to a particular
part of the signal network. The parts of the signal network that are being ignored—for example,
any parts of the network that are going into a closed inlet of selector~—continue to run even
though they have been effectively disconnected. That means MSP continues to calculate all the
numbers necessary for that part of the signal network, even though it has no effect on what you
hear. This is rather wasteful, computationally, and it would be preferable if one could actually shut
down the processing for the parts of the signal network that are not needed at a given time.

If the begin~ object is placed at the beginning of a portion of a signal network, and that portion
goes to the inlet of a selector~ or gate~ object, all calculations for that portion of the network will

22,050 Hz

A

ƒ6,600 37,500
 70

Tutorial 5 Fundamentals: Turning signals on and off
be completely shut down when the selector~ or gate~ is ignoring that signal. This is illustrated by
comparing the sinusoid and sawtooth signals in the tutorial patch.

When the sinusoid is chosen, processing for the sawtooth is turned off entirely

When the first signal inlet of selector~ is chosen, as in the example shown above, the other signal
inlets are ignored. Calculations cease for all the objects between begin~ and selector~—in this
case, the sig~, *~, and phasor~ objects. The line~ object, because it is not in the chain of objects
that starts with begin~, continues to run even while those other objects are stopped.

 • Choose “Sawtooth” from the pop-up menu, set the frequency back to 440 Hz, and turn audio
on. Click on the message box above the line~ object. The line~ makes a glissando up an octave
and back down over the course of ten seconds. Now click on it again, let the glissando get
underway for two seconds, then use the pop-up menu to switch the selector~ off. Wait five
seconds, then switch back to the sawtooth. The glissando is on its way back down, indicating
that the line~ object continued to work even though the sig~, *~, and phasor~ objects were
shut down. When the glissando has finished, turn audio off.

The combination of begin~ and selector~ (or gate~) can work perfectly well from one subpatch to
another, as well.

• Double-click on the patcher triangle object to view its contents.

Contents of the patcher triangle object

Here the begin~ object is inside a subpatch, and the selector~ is in the main patch, but the combi-
nation still works to stop audio processing in the objects that are between them. There is no MSP
71

Tutorial 5 Fundamentals: Turning signals on and off
object for making a triangle wave, so cycle~ reads a single cycle of a triangle wave from an AIFF file
loaded into a buffer~.

begin~ is really just an indicator of a portion of the signal network that will be disabled when selec-
tor~ turns it off. What actually comes out of begin~ is a constant signal of 0, so begin~ can be used
at any point in the signal network where a 0 signal is appropriate. It can either be added with some
other signal in a signal inlet (in which case it adds nothing to that signal), or it can be connected to
an object that accepts but ignores signal input, such as sig~ or noise~.

Disabling audio in a Patcher: mute~ and pcontrol

You have seen that the startwindow message to dac~ turns audio on in a single Patcher and its sub-
patches, and turns audio off in all other patches. There are also a couple of ways to turn audio off
in a specific subpatch, while leaving audio on elsewhere. One way is to connect a mute~ object to
the inlet of the subpatch you want to control.

Stopping audio processing in a specific subpatch

To mute a subpatch, connect a mute~ object to the inlet of the subpatch, as shown. When mute~
receives a non-zero int in its inlet, it stops audio processing for all MSP objects in the subpatch.
Sending 0 to mute~ object’s inlet unmutes the subpatch.

• Choose “Square” from the pop-up menu, and turn audio on to hear the square wave. Click on
the toggle above the mute~ object to disable the patcher pulsewave subpatch. Click on the same
toggle again to unmute the subpatch.

This is similar to using the begin~ and selector~ objects, but the mute~ object disables the entire
subpatch. (Also, the syntax is a little different. Because of the verb “mute”, a non-zero int to mute~
has the effect of turning audio off, and 0 turns audio on.)

In the tutorial example, it really is overkill to have the output of patcher pulsewave go to selector~
and to have a mute~ object to mute the subpatch. However, it’s done here to show a distinction.
The selector~ can cut off the flow of signal from the patcher pulsewave subpatch, but the MSP
objects in the subpatch continue to run (because there is no begin~ object at its beginning). The
mute~ object allows one to actually stop the processing in the subpatch, without using begin~ and
selector~.
 72

Tutorial 5 Fundamentals: Turning signals on and off
• Double-click on the patcher pulsewave object to see its contents.

Output is 1 for half the cycle, and 0 for half the cycle

To make a square wave oscillator, we simply send the output of phasor~—which goes from 0 to
1—into the inlet of <~ 0.5 (<~ is the MSP equivalent of the Max object <). For the first half of each
wave cycle, the output of phasor~ is less than 0.5, so the <~ object sends out 1. For the second half
of the cycle, the output of phasor~ is greater than 0.5, so the <~ object sends out 0.

The pass~ object between the <~ object and the outlet is necessary to avoid unwelcome noise
when the subpatcher is muted. It merely passes its input to its output unless the subpatcher is
muted, when it outputs a zero signal. pass~ objects are needed above any outlet of a patcher that
might be muted.

Another way to disable the MSP objects in a subpatch is with the pcontrol object. Sending the mes-
sage enable 0 to a pcontrol object connected to a subpatch disables all MSP objects—and all MIDI
objects!—in that subpatch. The message enable 1 re-enables MIDI and audio objects in the sub-
patch.

pcontrol can disable and re-enable all MIDI and audio objects in a subpatch

The patcher harmonics subpatch contains a complete signal network that’s essentially independent
of the main patch. We used pcontrol to disable that subpatch initially, so that it won’t conflict with
the sound coming from the signal network in the main patch. (Notice that loadbang causes an
enable 0 message to be sent to pcontrol when the main patch is loaded, disabling the MSP objects in
the subpatch.)

• Turn audio off, click on the toggle above the patcher harmonics object to enable it, then double-
click on the patcher harmonics object to see its contents.
73

Tutorial 5 Fundamentals: Turning signals on and off
This subpatch combines 8 harmonically related sinusoids to create a complex tone in which the
amplitude of each harmonic (harmonic number n) is proportional to 1/2

n. Because the tones are
harmonically related, their sum is a periodic wave at the fundamental frequency.

Wave produced by the patcher harmonics subpatch

The eight frequencies fuse together psychoacoustically and are heard as a single complex tone at
the fundamental frequency. It is interesting to note that even when the fundamental tone is
removed, the sum of the other seven harmonics still implies that fundamental, and we perceive
only a loudness change and a timbral change but no change in pitch.

The same tone, minus its first harmonic, still has the same period

• Click on the startwindow message to start audio in the subpatch. Try removing and replacing
the fundamental frequency by sending 0 and 1 to the selector~. Click on stop to turn audio off.

Summary

The startwindow message to dac~ (or adc~) starts audio processing in the Patcher window that con-
tains the dac~, and in any of that window’s subpatches, but turns audio off in all other patches. The
mute~ object, connected to an inlet of a subpatch, can be used to disable all MSP objects in that
subpatch. An enable 0 message to a pcontrol object connected to an inlet of a subpatch can also be
used to disable all MSP objects in that subpatch. (This disables all MIDI objects in the subpatch,
too.) The pass~ object silences the output of a subpatcher when it is muted.

You can use a selector~ object to choose one of several signals to be passed on out the outlet, or to
close off the flow of all the signals it receives. All MSP objects that are connected in a signal flow
between the outlet of a begin~ object and an inlet of a selector~ object (or a gate~ object) get com-
pletely disconnected from the signal network when that inlet is closed.
 74

Tutorial 5 Fundamentals: Turning signals on and off
Any of these methods is an effective way to play selectively a subset of all the MSP objects in a
given signal network (or to select one of several different networks). You can have many signal net-
works loaded, but only enable one at a time; in this way, you can switch quickly from one sound to
another, but the computer only does processing that affects the sound you hear.

See Also

begin~ Define a switchable part of a signal network
mute~ Disable signal processing in a subpatch
pass~ Eliminate noise in a muted subpatcher
pcontrol Open and close subwindows within a patcher
selector~ Assign one of several inputs to an outlet
75

Tutorial 6
Fundamentals: Review

Exercises in the fundamentals of MSP

In this chapter, we suggest some tasks for you to program that will test your understanding of the
fundamentals of MSP presented in the Tutorial so far. A few hints are included to get you started.
Try these three progressive exercises on your own first, in new file of your own. Then check the
example patch to see a possible solution, and read on in this chapter for an explanation of the solu-
tion patch.

Exercise 1

• Write a patch that plays the note E above middle C for one second, ten times in a row, with an
electric guitar-like timbre. Make it so that all you have to do is click once to turn audio on, and
once to play the ten notes.

Here are a few hints:

1. The frequency of E above middle C is 329.627557 Hz.

2. For an “electric guitar-like timbre” you can use the AIFF file gtr512.aiff that was used in Tuto-
rial 3. You’ll need to read that file into a buffer~ object, and access the buffer~ with a cycle~
object. In order to read the file in directly, without a dialog box to find the file, your patch and
the audio file should be saved in the same folder. You can either save your patch in the MSP
Tutorial folder or, in the Finder, option-drag a copy of the gtr512.aiff file into the folder where
you have saved your patch.

3. Your sound will also need an amplitude envelope that is characteristic of a guitar: very fast
attack, fast decay, and fairly steady (only slightly diminishing) sustain. Try using a list of line
segments (target values and transition times) to a line~ object, and using the output of line~
to scale the amplitude of the cycle~.

4. To play the note ten times in a row, you’ll need to trigger the amplitude envelope repeatedly at
a steady rate. The Max object metro is well suited for that task. To stop after ten notes, your
patch should either count the notes or wait a specific amount of time, then turn the metro off.

Exercise 2

• Modify your first patch so that, over the course of the ten repeated notes, the electric guitar
sound crossfades with a sinusoidal tone a perfect 12th higher. Use a linear crossfade, with the
amplitude of one sound going from 1 to 0, while the other sound goes from 0 to 1. (We discuss
other ways of crossfading in a future chapter.) Send the guitar tone to the left audio output
channel, and the sine tone to the right channel.
76

Tutorial 6 Fundamentals: Review
Hints:

1. You will need a second cycle~ object to produce the tone a 12th higher.

2. To obtain the frequency that’s a (just tuned) perfect 12th above E, simply multiply 329.627557
times 3. The frequency that’s an equal tempered perfect 12th above E is 987.7666 Hz. Use
whichever tuning you prefer.

3. In addition to the amplitude envelope for each note, you will need to change the over-all
amplitude of each tone over the course of the ten seconds. This can be achieved using an addi-
tional *~ object to scale the amplitude of each tone, slowly changing the scaling factor from 1
to 0 for one tone, and from 0 to 1 for the other.

Exercise 3

• Modify your second patch so that, over the course of the ten repeated notes, the two crossfad-
ing tones also perform an over-all diminuendo, diminishing to 1/32 their original amplitude
(i.e., by 30 dB).

Hints:

1. This will require yet another amplitude scaling factor (presumably another *~ object) to
reduce the amplitude gradually by a factor of .03125.

2. Note that if you scale the amplitude linearly from 1 to .03125 in ten seconds, the diminuendo
will seem to start slowly and accelerate toward the end. That’s because the linear distance
between 1 and .5 (a reduction in half) is much greater than the linear distance between .0625
and .03125 (also a reduction in half). The first 6 dB of diminuendo will therefore occur in the
first 5.16 seconds, but the last 6 dB reduction will occur in the last .32 seconds. So, if you want
the diminuendo to be perceived as linear, you will have to adjust accordingly.

Solution to Exercise 1

• Scroll the example Patcher window all the way to the right to see one possible solution to these
exercises.

To make an oscillator with a guitar-like waveform, you need to read the audio file gtr512.aiff (or
some similar waveform) into a buffer~, and then refer to that buffer~ with a cycle~. (See Tutorial
3.)

cycle~ traverses the buffer~ 329.627533 times per second

Note that there is a limit to the precision with which Max can represent decimal numbers. When
you save your patch, Max may change float values slightly. In this case, you won’t hear the differ-
ence.
77

Tutorial 6 Fundamentals: Review
If you want the audio file to be read into the buffer~ immediately when the patch is loaded, you
can type the filename in as a second argument in the buffer~ object, or you can use loadbang to
trigger a read message to buffer~. In our solution we also chose to provide the frequency from a
number box—which allows you to play other pitches—rather than as an argument to cycle~, so we
also send cycle~ an initial frequency value with loadbang.

loadbang is used to initialize the contents of buffer~ and the frequency of cycle~

Now that we have an oscillator producing the desired tone, we need to provide an amplitude enve-
lope to shape a note. We chose the envelope shown below, composed of straight line segments.
(See Tutorial 3.)

“Guitar-like” amplitude envelope

This amplitude envelope is imposed on the output of cycle~ with a combination of line~ and *~. A
metro is used to trigger the envelope once per second, and the metro gets turned off after a 10-sec-
ond delay.

Ten guitar-like notes are played when the button is clicked

0
0 1 sec.

1

 78

Tutorial 6 Fundamentals: Review
Solution to Exercise 2

For the right output channel we want a sinusoidal tone at three times the frequency (the third har-
monic of the fundamental tone), with the same amplitude envelope.

Two oscillators with the same amplitude envelope and related frequencies

To crossfade between the two tones, the amplitude of the first tone must go from 1 to 0 while the
amplitude of the second tone goes from 0 to 1. This can again be achieved with the combination of
line~ and *~ for each tone.

Linear crossfade of two tones

We used a little trick to economize. Rather than use a separate line~ object to fade the second tone
from 0 to 1, we just subtract 1 from the output of the existing line~, which gives us a ramp from 0
to -1. Perceptually this will have the same effect.

This crossfade is triggered (via s and r objects) by the same button that triggers the metro, so the
crossfade starts at the same time as the ten individual notes do.

Solution to Exercise 3

Finally, we need to use one more amplitude envelope to create a global diminuendo. The two tones
go to yet another *~ object, controlled by another line~. As noted earlier, a straight line decrease in
79

Tutorial 6 Fundamentals: Review
amplitude will not give the perception of constant diminuendo in loudness. Therefore, we used
five line segments to simulate a curve that decreases by half every two seconds.

Global amplitude envelope decreasing by half every two seconds

This global amplitude envelope is inserted in the signal network to scale both tones down
smoothly by a factor of .03125 over 10 seconds.

Both tones are scaled by the same global envelope

0 10 sec.
0

1

 80

Tutorial 7
Synthesis: Additive synthesis

In the tutorial examples up to this point we have synthesized sound using basic waveforms. In the
next few chapters we’ll explore a few other well known synthesis techniques using sinusoidal
waves. Most of these techniques are derived from pre-computer analog synthesis methods, but
they are nevertheless instructive and useful.

Combining tones

A sine wave contains energy at a single frequency. Since complex tones, by definition, are com-
posed of energy at several (or many) different frequencies, one obvious way to synthesize complex
tones is to use multiple sine wave oscillators and add them together.

Four sinusoids added together to make a complex tone

Of course, you can add any waveforms together to produce a composite tone, but we’ll stick with
sine waves in this tutorial example. Synthesizing complex tones by adding sine waves is a some-
what tedious method, but it does give complete control over the amplitude and frequency of each
component (partial) of the complex tone.

In the tutorial patch, we add together six cosine oscillators (cycle~ objects), with independent
control over the frequency, amplitude, and phase of each one. In order to simplify the patch, we
designed a subpatch called partial~ which allows us to specify the frequency of each partial as a
ratio relative to a fundamental frequency.

The contents of the subpatch partial~

For example, if we want a partial to have a frequency twice that of the fundamental we just type in
2.0 as an argument (or send it in the second inlet). This way, if several partial~ objects are receiving
81

Tutorial 7 Synthesis: Additive synthesis
their fundamental frequency value (in the left inlet) from the same source, their relative frequen-
cies will stay the same even when the value of the fundamental frequency changes.

Of course, for the sound to be very interesting, the amplitudes of the partials must evolve with rel-
ative independence. Therefore, in the main patch, we control the amplitude of each partial with its
own envelope generator.

Envelope generator: function

In Tutorial 3 you saw how to create an amplitude envelope by sending a list of pairs of numbers to a
line~ object, thus giving it a succession of target values and transition times. This idea of creating a
control function from a series of line segments is useful in many contexts—generating amplitude
envelopes happens to be one particularly common usage—and it is demonstrated in Tutorial 6, as
well.

The function object is a great help in generating such line segment functions, because it allows you
to draw in the shape that you want, as well as define the function’s domain and range (the numeri-
cal value of its dimensions on the x and y axes). You can draw a function simply by clicking with
the mouse where you want each breakpoint to appear. When function receives a bang, it sends a list
of value-time pairs out its 2nd outlet. That list, when used as input to the line~ object, produces a
changing signal that corresponds to the shape drawn.

function is a graphic function generator for a control signal when used with line~

By the way, function is also useful for non-signal purposes in Max. It can be used as an interpolat-
ing lookup table. When it receives a number in its inlet, it considers that number to be an x value
and it looks up the corresponding y value in the drawn function (interpolating between break-
points as necessary) and sends it out the left outlet.

A variety of complex tones

Even with only six partials, one can make a variety of timbres ranging from “realistic” instrument-
like tones to clearly artificial combinations of frequencies. The settings for a few different tones
have been stored in a preset object, for you to try them out. A brief explanation of each tone is pro-
vided below.
 82

Tutorial 7 Synthesis: Additive synthesis
• Click on the ezdac~ speaker icon to turn audio on. Click on the button to play a tone. Click on
one of the stored presets in the preset object to change the settings, then click the button again
to hear the new tone.

Preset 1. This tone is not really meant to emulate a real instrument. It’s just a set of harmonically
related partials, each one of which has a different amplitude envelope. Notice how the timbre of
the tone changes slightly over the course of its duration as different partials come to the fore-
ground. (If you can’t really notice that change of timbre, try changing the note’s duration to some-
thing longer, such as 8000 milliseconds, to hear the note evolve more slowly.)

Preset 2. This tone sounds rather like a church organ. The partials are all octaves of the funda-
mental, the attack is moderately fast but not percussive, and the amplitude of the tone does not
diminish much over the course of the note. You can see and hear that the upper partials die away
more quickly than the lower ones.

Preset 3. This tone consists of slightly mistuned harmonic partials. The attack is immediate and
the amplitude decays rather rapidly after the initial attack, giving the note a percussive or plucked
effect.

Preset 4. The amplitude envelopes for the partials in this tone are derived from an analysis of a
trumpet note in the lower register. Of course, these are only six of the many partials present in a
real trumpet sound.

Preset 5. The amplitude envelopes for the partials of this tone are derived from the same trumpet
analysis. However, in this case, only the odd-numbered harmonics are used. This creates a tone
more like a clarinet, because the cylindrical bore of a clarinet resonates the odd harmonics. Also,
the longer duration of this note slows down the entire envelope, giving it a more characteristically
clarinet-like attack.

Preset 6. This is a completely artificial tone. The lowest partial enters first, followed by the sixth
partial a semitone higher. Eventually the remaining partials enter, with frequencies that lie
between the first and sixth partial, creating a microtonal cluster. The beating effect is due to the
interference between these waves of slightly different frequency.

Preset 7. In this case the partials are spaced a major second apart, and the amplitude of each par-
tial rises and falls in such a way as to create a composite effect of an arpeggiated whole-tone cluster.
Although this is clearly a whole-tone chord rather than a single tone, the gradual and overlapping
attacks and decays cause the tones to fuse together fairly successfully.

Preset 8. In this tone the partials suggest a harmonic spectrum strongly enough that we still get a
sense of a fundamental pitch, but they are sufficiently mistuned that they resemble the inharmonic
spectrum of a bell. The percussive attack, rapid decay, and independently varying partials during
the sustain portion of the note are also all characteristic of a struck metal bell.

Notice that when you are adding several signals together like this, their sum will often exceed the
amplitude limits of the dac~ object, so the over-all amplitude must be scaled appropriately with a
*~ object.
83

Tutorial 7 Synthesis: Additive synthesis
Experiment with complex tones

• Using these tones as starting points, you may want to try designing your own tones with this
additive synthesis patch. Vary the tones by changing the fundamental frequency, partials, and
duration of the preset tones. You can also change the envelopes by dragging on the break-
points.

To draw a function in the function object:

• Click in the function object to create a new breakpoint. If you click and drag, the x and y coor-
dinates of the point are shown in the upper portion of the object, and you can immediately
move the breakpoint to the position you want.

• Similarly, you can click and drag on any existing breakpoint to move it.

• Shift-click on an existing point to delete it.

Although not demonstrated in this tutorial, it is also possible to create, move, and delete break-
points in a function just by using Max messages. See the description of function in the Objects sec-
tion of the manual for details.

The message setdomain, followed by a number, changes the scale of the x axis in the function with-
out changing the shape of the envelope. When you change the number in the “Duration” number
box, it sends a setdomain message to the function.

Summary

Additive synthesis is the process of synthesizing new complex tones by adding tones together. Since
pure sine tones have energy at only one frequency, they are the fundamental building blocks of
additive synthesis, but of course any signals can be added together. The sum signal may need to by
scaled by some constant signal value less than 1 in order to keep it from being clipped by the DAC.

In order for the timbre of a complex tone to remain the same when its pitch changes, each partial
must maintain its relationship to the fundamental frequency. Stating the frequency of each partial
in terms of a ratio to (i.e., a multiplier of) the fundamental frequency maintains the tone’s spec-
trum even when the fundamental frequency changes.

In order for a complex tone to have an interesting timbre, the amplitude of the partials must
change with a certain degree of independence. The function object allows you to draw control
shapes such as amplitude envelopes, and when function receives a bang it describes that shape to a
line~ object to generate a corresponding control signal.

See Also

function Graphical function breakpoint editor
 84

Tutorial 8
Synthesis: Tremolo and ring modulation

Multiplying signals

In the previous chapter we added sine tones together to make a complex tone. In this chapter we
will see how a very different effect can be achieved by multiplying signals. Multiplying one wave by
another—i.e., multiplying their instantaneous amplitudes, sample by sample—creates an effect
known as ring modulation (or, more generally, amplitude modulation). “Modulation” in this case
simply means change; the amplitude of one waveform is changed continuously by the amplitude
of another.

In our example patch, we multiply two sinusoidal tones. Ring modulation (multiplication) can be
performed with any signals, and in fact the most sonically interesting uses of ring modulation

Technical detail: Multiplication of waveforms in the time domain is equivalent to convolution
of waveforms in the frequency domain. One way to understand convolution is as the superim-
position of one spectrum on every frequency of another spectrum. Given two spectra S1 and S2,
each of which contains many different frequencies all at different amplitudes, make a copy of S1
at the location of every frequency in S2, with each copy scaled by the amplitude of that particu-
lar frequency of S2.

Since a cosine wave has equal amplitude at both positive and negative frequencies, its spectrum
contains energy (equally divided) at both ƒ and -ƒ. When convolved with another cosine wave,
then, a scaled copy of (both the positive and negative frequency components of) the one wave is
centered around both the positive and negative frequency components of the other.

Multiplication in the time domain is equivalent to convolution in the frequency domain

0 Hz 0 Hz 0 Hzƒ ƒ ƒ

a/2 a/2

a/4

S S1 2 S S1 2*
Spectrum S1, centered upon (and scaled by) each component of S2, results in S1 * S2
85

Tutorial 8 Synthesis: Tremolo and ring modulation
involve complex tones. However, we’ll stick to sine tones in this example for the sake of simplicity,
to allow you to hear clearly the effects of signal multiplication.

Simple multiplication of two cosine waves

The tutorial patch contains two cycle~ objects, and the outlet of each one is connected to one of
the inlets of a *~ object. However, the output of one of the cycle~ objects is first scaled by an addi-
tional *~ object, which provides control of the over-all amplitude of the result. (Without this, the
over-all amplitude of the product of the two cycle~ objects would always be 1.)

Product of two cosine waves (one with amplitude scaled beforehand)

Tremolo

When you first open the patch, a loadbang object initializes the frequency and amplitude of the
oscillators. One oscillator is at an audio frequency of 1000 Hz. The other is at a sub-audio fre-
quency of 0.1 Hz (one cycle every ten seconds). The 1000 Hz tone is the one we hear (this is
termed the carrier oscillator), and it is modulated by the other wave (called the modulator) such
that we hear the amplitude of the 1000 Hz tone dip to 0 whenever the 0.1 Hz cosine goes to 0.
(Twice per cycle, meaning once every five seconds.)

• Click on the ezdac~ to turn audio on. You will hear the amplitude of the 1000 Hz tone rise and
fall according to the cosine curve of the modulator, which completes one full cycle every ten
seconds. (When the modulator is negative, it inverts the carrier, but we don’t hear the differ-
ence, so the effect is of two equivalent dips in amplitude per modulation period.)

The amplitude is equal to the product of the two waves. Since the peak amplitude of the carrier is
1, the over-all amplitude is equal to the amplitude of the modulator.

• Drag on the “Amplitude” number box to adjust the sound to a comfortable level. Click on the
message box containing the number 1 to change the modulator rate.
 86

Tutorial 8 Synthesis: Tremolo and ring modulation
With the modulator rate set at 1, you hear the amplitude dip to 0 two times per second. Such a
periodic fluctuation in amplitude is known as tremolo. (Note that this is distinct from vibrato, a
term usually used to describe a periodic fluctuation in pitch or frequency.) The perceived rate of
tremolo is equal to two times the modulator rate, since the amplitude goes to 0 twice per cycle. As
described on the previous page, ring modulation produces the sum and difference frequencies, so
you’re actually hearing the frequencies 1001 Hz and 999 Hz, and the 2 Hz beating due to the inter-
ference between those two frequencies.

• One at a time, click on the message box objects containing 2 and 4. What tremolo rates do you
hear? The sound is still like a single tone of fluctuating amplitude because the sum and differ-
ence tones are too close in frequency for you to separate them successfully, but can you calcu-
late what frequencies you’re actually hearing?

• Now try setting the rate of the modulator to 8 Hz, then 16 Hz.

In these cases the rate of tremolo borders on the audio range. We can no longer hear the tremolo as
distinct fluctuations, and the tremolo just adds a unique sort of “roughness” to the sound. The
sum and difference frequencies are now far enough apart that they no longer fuse together in our
perception as a single tone, but they still lie within what psychoacousticians call the critical band.
Within this critical band we have trouble hearing the two separate tones as a pitch interval, pre-
sumably because they both affect the same region of our basilar membrane.

Sidebands

• Try setting the rate of the modulator to 32 Hz, then 50 Hz.

At a modulation rate of 32 Hz, you can hear the two tones as a pitch interval (approximately a
minor second), but the sensation of roughness persists. With a modulation rate of 50 Hz, the sum
and difference frequencies are 1050 Hz and 950 Hz—a pitch interval almost as great as a major
second—and the roughness is mostly gone. You might also hear the tremolo rate itself, as a tone at
100 Hz.

You can see that this type of modulation produces new frequencies not present in the carrier and
modulator tones. These additional frequencies, on either side of the carrier frequency, are often
called sidebands.

• Listen to the remaining modulation rates.

At certain modulation rates, all the sidebands are aligned in a harmonic relationship. With a mod-
ulation rate of 200 Hz, for example, the tremolo rate is 400 Hz and the sum and difference fre-
quencies are 800 Hz and 1200 Hz. Similarly, with a modulation rate of 500 Hz, the tremolo rate is
1000 Hz and the sum and difference frequencies are 500 Hz and 1500 Hz. In these cases, the side-
bands fuse together more tightly as a single complex tone.

• Experiment with other carrier and modulator frequencies by typing other values into the
number box objects. When you have finished, click on ezdac~ again to turn audio off.
87

Tutorial 8 Synthesis: Tremolo and ring modulation
Summary

Multiplication of two digital signals is comparable to the analog audio technique known as ring
modulation. Ring modulation is a type of amplitude modulation—changing the amplitude of one
tone (termed the carrier) with the amplitude of another tone (called the modulator). Multiplica-
tion of signals in the time domain is equivalent to convolution of spectra in the frequency domain.

Multiplying an audio signal by a sub-audio signal results in regular fluctuations of amplitude
known as tremolo. Multiplication of signals creates sidebands—additional frequencies not present
in the original tones. Multiplying two sinusoidal tones produces energy at the sum and difference
of the two frequencies. This can create beating due to interference of waves with similar frequen-
cies, or can create a fused complex tone when the frequencies are harmonically related. When two
signals are multiplied, the output amplitude is determined by the product of the carrier and mod-
ulator amplitudes.
 88

Tutorial 9
Synthesis: Amplitude modulation

Ring modulation and amplitude modulation

Amplitude modulation (AM) involves changing the amplitude of a “carrier” signal using the out-
put of another “modulator” signal. In the specific AM case of ring modulation (discussed in Tuto-
rial 8) the two signals are simply multiplied. In the more general case, the modulator is used to
alter the carrier’s amplitude, but is not the sole determinant of it. To put it another way, the modu-
lator can cause fluctuation of amplitude around some value other than 0. The example below illus-
trates the difference between ring modulation and more common amplitude modulation.

Ring modulation Amplitude modulation

The example on the left is 1/4 second of a 100 Hz cosine multiplied by a 4 Hz cosine; the amplitude
of both cosines is 1. In the example on the right, the 4 Hz cosine has an amplitude of 0.25, which is
used to vary the amplitude of the 100 Hz tone ±0.25 around 0.75 (going as low as 0.5 and as high
as 1.0). The two main differences are a) the AM example never goes all the way to 0, whereas the
ring modulation example does, and b) the ring modulation is perceived as two amplitude dips per
modulation period (thus creating a tremolo effect at twice the rate of the modulation) whereas the

1

0

-1

0

1

-1
89

Tutorial 9 Synthesis: Amplitude modulation
AM is perceived as a single cosine fluctuation per modulation period. The two MSP patches that
made these examples are shown below.

Ring modulation Amplitude modulation

The difference in effect is due to the constant value of 0.75 in the AM patch, which is varied by a
modulator of lesser amplitude. This constant value can be thought of as the carrier’s amplitude,
which is varied by the instantaneous amplitude of the modulator. The amplitude still varies
according to the shape of the modulator, but the modulator is not centered on 0.

Implementing AM in MSP

The tutorial patch is designed in such a way that the DC offset of the modulator is always 1 minus
the amplitude of its sinusoidal variation. That way, the peak amplitude of the modulator is always

Technical detail: The amount that a wave is offset from 0 is called the DC offset. A constant
amplitude value such as this represents spectral energy at the frequency 0 Hz. The modulator in
AM has a DC offset, which distinguishes it from ring modulation.
 90

Tutorial 9 Synthesis: Amplitude modulation
1, so the product of carrier and modulator is always 1. A separate *~ object is used to control the
over-all amplitude of the sound.

The modulator is a sinusoid with a DC offset, which is multiplied by the carrier

• Click on the ezdac~ to turn audio on. Notice how the tremolo rate is the same as the frequency
of the modulator. Click on the message boxes 2, 4, and 8 in turn to hear different tremolo rates.

Achieving different AM effects

The primary merit of AM lies in the fact that the intensity of its effect can be varied by changing
the amplitude of the modulator.

• To hear a very slight tremolo effect, type the value 0.03 into the number box marked “Tremolo
Depth”. The modulator now varies around 0.97, from 1 to 0.94, producing an amplitude vari-
ation of only about half a decibel. To hear an extreme tremolo effect, change the tremolo depth
to 0.5; the modulator now varies from 1 to 0—the maximum modulation possible.

Amplitude modulation produces sidebands—additional frequencies not present in the carrier or
the modulator—equal to the sum and the difference of the frequencies present in the carrier and
modulator. The presence of a DC offset (technically energy at 0 Hz) in the modulator means that
the carrier tone remains present in the output, too (which is not the case with ring modulation).

• Click on the message boxes containing the numbers 32, 50, 100, and 150, in turn. You will hear
the carrier frequency, the modulator frequency (which is now in the low end of the audio
range), and the sum and difference frequencies.
91

Tutorial 9 Synthesis: Amplitude modulation
When there is a harmonic relationship between the carrier and the modulator, the frequencies
produced belong to the harmonic series of a common fundamental, and tend to fuse more as a
single complex tone. For example, with a carrier frequency of 1000 Hz and a modulator at 250 Hz,
you will hear the frequencies 250 Hz, 750 Hz, 1000 Hz, and 1250 Hz— the 1st, 3rd, 4th, and 5th
harmonics of the fundamental at 250 Hz.

• Click on the message boxes containing the numbers 200, 250, and 500 in turn to hear harmonic
complex tones. Drag on the “Tremolo Depth” number box to change the depth value between
0. and 0.5, and listen to the effect on the relative strength of the sidebands.

• Explore different possibilities by changing the values in the number box objects. When you
have finished, click on the ezdac~ to turn audio off.

It is worth noting that any audio signals can be used as the carrier and modulator tones, and in fact
many interesting results can be obtained by amplitude modulation with complex tones. (Tutorial
23 allows you to perform amplitude modulation on the sound coming into the computer.)

Summary

The amplitude of an audio (carrier) signal can be modulated by another (modulator) signal,
either by simple multiplication (ring modulation) or by adding a time-varying modulating signal
to a constant signal (DC offset) before multiplying it with the carrier signal (amplitude modula-
tion). The intensity of the amplitude modulation can be controlled by increasing or reducing the
amplitude of the time-varying modulator relative to its DC offset. When the modulator has a DC
offset, the carrier frequency will remain present in the output sound, along with sidebands at fre-
quencies determined by the sum and the difference of the carrier and the modulator. At sub-audio
modulating frequencies, amplitude modulation is heard as tremolo; at audio frequencies the car-
rier, modulator, and sidebands are all heard as a chord or as a complex tone.
 92

Tutorial 10
Synthesis: Vibrato and FM

Basic FM in MSP
Frequency modulation (FM) is a change in the frequency of one signal caused by modulating it
with another signal. In the most common implementation, the frequency of a sinusoidal carrier
wave is varied continuously with the output of a sinusoidal modulating oscillator. The modulator
is added to the constant base frequency of the carrier.

Simple frequency modulation

The example above shows the basic configuration for FM. The frequency of the modulating oscil-
lator determines the rate of modulation, and the amplitude of the modulator determines the
“depth” (intensity) of the effect.

• Click on the ezdac~ to turn audio on.

The sinusoidal movement of the modulator causes the frequency of the carrier to go as high as
1015 Hz and as low as 885 Hz. This frequency variation completes six cycles per second, so we
hear a 6 Hz vibrato centered around 1000 Hz. (Note that this is distinct from tremolo, which is a
fluctuation in amplitude, not frequency.)

• Drag upward on the number box marked “Modulation Depth” to change the amplitude of the
modulator. The vibrato becomes wider and wider as the modulator amplitude increases. Set
the modulation depth to 500.

With such a drastic frequency modulation, one no longer really hears the carrier frequency. The
tone passes through 1000 Hz so fast that we don’t hear that as its frequency. Instead we hear the
extremes—500 Hz and 1500 Hz—because the output frequency actually spends more time in
those areas.

Note that 500 Hz is an octave below 1000 Hz, while 1500 Hz is only a perfect fifth above 1000 Hz.
The interval between 500 Hz and 1500 Hz is thus a perfect 12th (as one would expect, given their
1:3 ratio). So you can see that a vibrato of equal frequency variation around a central frequency
does not produce equal pitch variation above and below the central pitch. (In Tutorial 17 we dem-
onstrate how to make a vibrato that is equal in pitch up and down.)
93

Tutorial 10 Synthesis: Vibrato and FM
• Set the modulation depth to 1000. Now begin dragging the “Modulator Frequency” number
box upward slowly to hear a variety of effects.

As the modulator frequency approaches the audio range, you no longer hear individual oscilla-
tions of the modulator. The modulation rate itself is heard as a low tone. As the modulation fre-
quency gets well into the audio range (at about 50 Hz), you begin to hear a complex combination
of sidebands produced by the FM process. The precise frequencies of these sidebands depend on
the relationship between the carrier and modulator frequencies.

• Drag the “Modulator Frequency” number box all the way up to 1000. Notice that the result is a
rich harmonic tone with fundamental frequency of 1000 Hz. Try typing in modulator fre-
quencies of 500, 250, and 125 and note the change in perceived fundamental.

In each of these cases, the perceived fundamental is the same as the modulator frequency. In fact,
though, it is not determined just by the modulator frequency, but rather by the relationship
between carrier frequency and modulator frequency. This will be examined more in the next
chapter.

• Type in 125 as the modulator frequency. Now drag up and down on the “Modulation Depth”
number box, making drastic changes. Notice that the pitch stays the same but the timbre
changes.

The timbre of an FM tone depends on the ratio of modulator amplitude to modulator frequency.
This, too, will be discussed more in the next chapter.

Summary
Frequency modulation (FM) is achieved by adding a time-varying signal to the constant fre-
quency of an oscillator. It is good for vibrato effects at sub-audio modulating frequencies, and can
produce a wide variety of timbres at audio modulating frequencies. The rich complex tones cre-
ated with FM contain many partials, even though only two oscillators are needed to make the
sound. This is a great improvement over additive synthesis, in terms of computational efficiency.
 94

Tutorial 11
Synthesis: Frequency modulation

Elements of FM synthesis

Frequency modulation (FM) has proved to be a very versatile and effective means of synthesizing
a wide variety of musical tones. FM is very good for emulating acoustic instruments, and for pro-
ducing complex and unusual tones in a computationally efficient manner.

Modulating the frequency of one wave with another wave generates many sidebands, resulting in
many more frequencies in the output sound than were present in the carrier and modulator waves
themselves. As was mentioned briefly in the previous chapter, the frequencies of the sidebands are
determined by the relationship between the carrier frequency (Fc) and the modulator frequency
(Fm); the relative strength of the different sidebands (which affects the timbre) is determined by
the relationship between the modulator amplitude (Am) and the modulator frequency (Fm).

Because of these relationships, it’s possible to boil the control of FM synthesis down to two crucial
values, which are defined as ratios of the pertinent parameters. One important value is the harmo-
nicity ratio, defined as Fm/Fc; this will determine what frequencies are present in the output tone,
and whether the frequencies have an harmonic or inharmonic relationship. The second important
value is the modulation index, defined as Am/Fm; this value affects the “brightness” of the timbre by
affecting the relative strength of the partials.

The frequencies of the sidebands are determined by the sum and difference of the carrier fre-
quency plus and minus integer multiples of the modulator frequency. Thus, the frequencies
present in an FM tone will be Fc, Fc+Fm, Fc-Fm, Fc+2Fm, Fc-2Fm, Fc+3Fm, Fc-3Fm, etc. This holds
true even if the difference frequency turns out to be a negative number; the negative frequencies
are heard as if they were positive. The number and strength of sidebands present is determined by
the modulation index; the greater the index, the greater the number of sidebands of significant
energy.

An FM subpatch: simpleFM~

The simpleFM~ object in this tutorial patch is not an MSP object; it’s a subpatch that implements
the ideas of harmonicity ratio and modulation index.

Technical detail: In John Chowning’s article “Synthesis of Complex Audio Spectra by Means of
Frequency Modulation” and in Curtis Roads’ Computer Music Tutorial, they write about the
ratio Fc/Fm. However, in F.R. Moore’s Elements of Computer Music he defines the term harmo-
nicity ratio as Fm/Fc. The idea in all cases is the same, to express the relationship between the
carrier and modulator frequencies as a ratio. In this tutorial we use Moore’s definition because
that way whenever the harmonicity ratio is an integer the result will be a harmonic tone with Fc
as the fundamental.
95

Tutorial 11 Synthesis: Frequency Modulation
• Double-click on the simpleFM~ subpatch object to see its contents.

The simpleFM~ subpatch

The main asset of this subpatch is that it enables one to specify the carrier frequency, harmonicity
ratio, and modulation index, and it then calculates the necessary modulator frequency and mod-
ulator amplitude (in the *~ objects) to generate the correct FM signal. The subpatch is flexible in
that it accepts either signals or numbers in its inlets, and the harmonicity ratio and modulation
index can be typed in as arguments in the main patch.

• Close the [simpleFM~] window.

Producing different FM tones

In the main patch, the carrier frequency and harmonicity ratio are provided to simpleFM~ as con-
stant values, and the modulation index is provided as a time-varying signal generated by the enve-
lope in the function object.

Providing values for the FM instrument
 96

Tutorial 11 Synthesis: Frequency Modulation
Because modulation index is the main determinant of timbre (brightness), and because the tim-
bre of most real sounds varies over time, the modulation index is a prime candidate to be con-
trolled by an envelope. This timbre envelope may or may not correspond exactly with the
amplitude of the sound, so in the main patch one envelope is used to control amplitude, and
another to control brightness.

Over the course of the note, the timbre and the amplitude evolve independently

Each of the presets contains settings to produce a different kind of FM tone, as described below.

• Turn audio on and click on the first preset in the preset object to recall some settings for the
instrument. Click on the button to play a note. To hear each of the different preset tones, click
on a different preset in the preset object to recall the settings for the instrument, then click on
the button to play a note.

Preset 1. The carrier frequency is for the pitch C an octave below middle C. The non-integer value
for the harmonicity ratio will cause an inharmonic set of partials. This inharmonic spectrum, the
steady drop in modulation index from bright to pure, and the long exponential amplitude decay
all combine to make a metallic bell-like tone.

Preset 2. This tone is similar to the first one, but with a (slightly mistuned) harmonic value for the
harmonicity ratio, so the tone is more like an electric piano.

Preset 3. An “irrational” (1 over the square root of 2) value for the harmonicity ratio, a low modu-
lation index, a short duration, and a characteristic envelope combine to give this tone a quasi-
pitched drum-like quality.

Preset 4. In brass instruments the brightness is closely correlated with the loudness. So, to achieve
a trumpet-like sound in this example the modulation index envelope essentially tracks the ampli-
tude envelope. The amplitude envelope is also characteristic of brass instruments, with a slow
attack and little decay. The pitch is G above middle C, and the harmonicity ratio is 1 for a fully har-
monic spectrum.

Preset 5. On the trumpet, a higher note generally requires a more forceful attack; so the same
envelope applied to a shorter duration, and a carrier frequency for the pitch high C, emulate a
staccato high trumpet note.
97

Tutorial 11 Synthesis: Frequency Modulation
Preset 6. The same pitch and harmonicity, but with a percussive attack and a low modulation
index, give a xylophone sound.

Preset 7. A harmonicity ratio of 4 gives a spectrum that emphasizes odd harmonics. This, com-
bined with a low modulation index and a slow attack, produces a clarinet-like tone.

Preset 8. Of course, the real fun of FM synthesis is the surreal timbres you can make by choosing
unorthodox values for the different parameters. Here, an extreme and wildly fluctuating modula-
tion index produces a sound unlike that produced by any acoustic object.

• You can experiment with your own envelopes and settings to discover new FM sounds. When
you have finished, click on the ezdac~ to turn audio off.

As with amplitude modulation, frequency modulation can also be performed using complex
tones. Sinusoids have traditionally been used most because they give the most predictable results,
but many other interesting sounds can be obtained by using complex tones for the carrier and
modulator signals.

Summary

FM synthesis is an effective technique for emulating acoustic instrumental sounds as well as for
generating unusual new sounds.

The frequencies present in an FM tone are equal to the carrier frequency plus and minus integer
multiples of the modulator frequency. Therefore, the harmonicity of the tone can be described by
a single number—the ratio of the modulator and carrier frequencies—sometimes called the har-
monicity ratio. The relative amplitude of the partials is dependent on the ratio of the modulator’s
amplitude to its frequency, known as the modulation index.

In most acoustic instruments, the timbre changes over the course of a note, so envelope control of
the modulation index is appropriate for producing interesting sounds. A non-integer harmonicity
ratio yields an inharmonic spectrum, and when combined with a percussive amplitude envelope
can produce drum-like and bell-like sounds. An integer harmonicity ratio combined with the
proper modulation index envelope and amplitude envelope can produce a variety of pitched
instrument sounds.
 98

Tutorial 12
Synthesis: Waveshaping

Using a stored wavetable

In Tutorial 3 we used 512 samples stored in a buffer~ as a wavetable to be read by the cycle~ object.
The name of the buffer~ object is typed in as an argument to the cycle~ object, causing cycle~ to
use samples from the buffer~ as its waveform, instead of its default cosine wave. The frequency
value received in the left inlet of the cycle~ determines how many times per second it will read
through those 512 samples, and thus determines the fundamental frequency of the tone it plays.

Just to serve as a reminder, an example of that type of wavetable synthesis is included in the lower
right corner of this tutorial patch.

The cycle~ object reads repeatedly through the 512 samples stored in the buffer~

• Double-click on the buffer~ object to see its contents. The file gtr512.aiff contains one cycle of
a recorded electric guitar note. Click on the ezdac~ speaker icon to turn audio on. Click on the
toggle to open the gate~, allowing the output of cycle~ to reach the dac~. Click on the toggle
again to close the gate~.

This type of synthesis allows you to use any waveform for cycle~, but the timbre is static and some-
what lifeless because the waveform is unchanging. This tutorial presents a new way to obtain
dynamically changing timbres, using a technique known as waveshaping.

Table lookup: lookup~

In waveshaping synthesis an audio signal—most commonly a sine wave—is used to access a lookup
table containing some shaping function (also commonly called a transfer function). Each sample
value of the input signal is used as an index to look up a value stored in a table (an array of num-
bers). Because a lookup table may contain any values in any order, it is useful for mapping a linear
range of values (such as the signal range -1 to 1) to a nonlinear function (whatever is stored in the
lookup table). The Max object table is an example of a lookup table; the number received as input
(commonly in the range 0 to 127) is used to access whatever values are stored in the table.

The MSP object lookup~ allows you to use samples stored in a buffer~ as a lookup table which can
be accessed by a signal in the range -1 to 1. By default, lookup~ uses the first 512 samples in a
buffer~, but you can type in arguments to specify any excerpt of the buffer~ object’s contents for
99

Tutorial 12 Synthesis: Waveshaping
use as a lookup table. If 512 samples are used, input values ranging from -1 to 0 are mapped to the
first 256 samples, and input values from 0 to 1 are mapped to the next 256 samples; lookup~ inter-
polates between two stored values as necessary.

Sine wave used to read back and forth through an excerpt of the buffer~

The most commonly used input signal for indexing the lookup table is a sine wave—it’s a reason-
able choice because it reads smoothly back and forth through the table—but any audio signal can
be used as input to lookup~.

The important thing to observe about waveshaping synthesis is this: changing the amplitude of
the input signal changes the amount of the lookup table that gets used. If the range of the input sig-
nal is from -1 to 1, the entire lookup table is used. However, if the range of the input signal is from
-0.33 to 0.33, only the middle third of the table is used. As a general rule, the timbre of the output
signal becomes brighter (contains more high frequencies) as the amplitude of the input signal
increases.

It’s also worth noting that the amplitude of the input signal has no direct effect on the amplitude of
the output signal; the output amplitude depends entirely on the values being indexed in the
lookup table.
 100

Tutorial 12 Synthesis: Waveshaping
Varying timbre with waveshaping

The waveshaping part of the tutorial patch is in the lower left portion of the Patcher window. It’s
very similar to the example shown above. The lookup table consists of the 512 samples in the
buffer~, and it is read by a cosine wave from a cycle~ object.

Lookup table used for waveshaping

The upper portion of the Patcher window contains three different ways to vary the amplitude of
the cosine wave, which will vary the timbre.

• With the audio still on, choose “Set range by hand” from the pop-up umenu. This opens the
first signal inlet of the selector~, so you can alter the amplitude of the cycle~ by dragging in the
number box marked “By hand”. Change the value in the number box to hear different timbres.

Set the amplitude of the input signal to change the timbre of the output

To make the timbre change over the course of the note, you can use a control function envelope to
vary the amplitude of the cycle~ automatically over time.

• Choose “Control range by envelope” from the umenu. Set a note duration by typing a value
into the number box marked “Duration” (such as 1000 ms), then click on the button to play a
note. Experiment with different durations and envelopes.
101

Tutorial 12 Synthesis: Waveshaping
You can also modulate the amplitude of the input wave with another signal. An extremely slow
modulating frequency (such as 0.1 Hz) will change the timbre very gradually. A faster sub-audio
modulating frequency (such as 8 Hz) will create a unique sort of “timbre tremolo”. Modulating
the input wave at an audio rate creates sum and difference frequencies (as you have seen in Tutorial
9) which may interfere in various ways depending on the modulation rate.

• Choose “Modulate range by wave” from the umenu. Set the modulation rate to 0.1 Hz and set
the modulation depth to 0.9.

Very slow modulation of the input wave’s amplitude creates a gradual timbre change

Notice that the amplitude of the cycle~ is multiplied by 0.45 and offset by 0.5. That makes it range
from 0.05 to 0.95. (If it went completely to 0 the amplitude of the wave it’s modulating would be 0
and the sound would stop.) The “Modulation depth” number box goes from 0 to 1, but it’s actually
scaling the cycle~ within that range from 0.05 to 0.95.

• Experiment with other values for the depth and rate of modulation.

If you’re designing an instrument for musical purposes, you might use some combination of these
three ways to vary the timbre, and you almost certainly would have an independent amplitude
envelope to scale the amplitude of the output sound. (Remember that the amplitude of the signal
coming out of lookup~ depends on the sample values being read, and is not directly affected by the
amplitude of the signal coming into it.)

Summary

Waveshaping is the nonlinear distortion of a signal to create a new timbre. The sample values of the
original signal are used to address a lookup table, and the corresponding value from the lookup
table is sent out. The lookup~ object treats samples from a buffer~ as such a lookup table, and uses
the input range -1 to 1 to address those samples. A sine wave is commonly used as the input signal
for waveshaping synthesis. The amplitude of the input signal determines how much of the lookup
table gets used. As the amplitude of the input signal increases, more of the table gets used, and
consequently more frequencies are generally introduced into the output. Thus, you can change the
timbre of a waveshaped signal dynamically by continuously altering the amplitude of the input
signal, using a control function or a modulating signal.
 102

Tutorial 12 Synthesis: Waveshaping
See Also

buffer~ Store audio samples
cycle~ Table lookup oscillator
lookup~ Transfer function lookup table
103

Tutorial 13
Sampling: Recording and playback

Sound input: adc~

For getting sound from the “real world” into MSP, there is an analog-to-digital conversion object
called adc~. It recognizes all the same messages as the dac~ object, but instead of sending signal to
the audio output jacks of the computer, adc~ receives signal from the audio input jacks, and sends
the incoming signal out its outlets. Just as dac~ has a user interface version called ezdac~, there is
an iconic version of adc~ called ezadc~.

adc~ and ezadc~ get sound from the audio input jacks and send it out as a signal

To use the adc~ object, you need to send sound from some source into the computer. The sound
may come from the CD player of your computer, from any line level source such as a tape player, or
from a microphone—your computer might have a built-in microphone, or you can use a standard
microphone via a preamplifer..

• Double click on the adc~ object to open the DSP Status window. Make sure that the Input
Source popup menu displays the input device you want. Depending on your computer system,
audio card and driver, you may not have a choice of input device-this is nothing to be con-
cerned about.
104

Tutorial 13 Sampling: Recording and playback
• Click on the toggle above the adc~ object to turn audio on. If you want to hear the input sound
played directly out the output jacks, adjust the number box marked Audio thruput level.

Adjust the audio throughput to a comfortable listening level

If your input source is a microphone, you’ll need to be careful not to let the output sound from
your computer feed back into the microphone.

Recording a sound: record~

To record a sample of the incoming sound (or any signal), you first need to designate a buffer in
which the sound will be stored. Your patch should therefore include at least one buffer~ object. You
also need a record~ object with the same name as the buffer~. The sound that you want to record
must go in the inlet of the record~ object.

Record two seconds of stereo sound into the buffer~ named soundbite

When record~ receives a non-zero int in its left inlet, it begins recording the signals connected to its
record inlets; 0 stops the recording. You can specify recording start and end points within the
buffer~ by sending numbers in the two right inlets of record~. If you don’t specify start and end
points, recording will fill the entire buffer~. Notice that the length of the recording is limited by the
length of the buffer~. If this were not the case, there would be the risk that record~ might be left on
accidentally and fill the entire application memory.

In the tutorial patch, record~ will stop recording after 2 seconds (2000 ms). We have included a
delayed bang to turn off the toggle after two seconds, but this is just to make the toggle accurately
105

Tutorial 13 Sampling: Recording and playback
display the state of record~. It is not necessary to stop record~ explicitly, because it will stop auto-
matically when it reaches its end point or the end of the buffer~.

A delayed bang turns off the toggle after two seconds so it will display correctly

• Make sure that you have sound coming into the computer, then click on the toggle to record
two seconds of the incoming sound. If you want to, you can double-click on the buffer~ after-
ward to see the recorded signal.

Reading through a buffer~: index~

So far you have seen two ways to get sound into a buffer~. You can read in an existing audio file
with the read message, and you can record sound into it with the record~ object. Once you get the
sound into a buffer~, there are several things you can do with it. You can save it to an audio file by
sending the write message to the buffer~. You can use 513 samples of it as a wavetable for cycle~, as
demonstrated in Tutorial 3. You can use any section of it as a transfer function for lookup~, as dem-
onstrated in Tutorial 12. You can also just read straight through it to play it out the dac~. This tuto-
rial patch demonstrates the two most basic ways to play the sound in a buffer~. A third way is
demonstrated in Tutorial 14.

The index~ object receives a signal as its input, which represents a sample number. It looks up that
sample in its associated buffer~, and sends the value of that sample out its outlet as a signal. The
count~ object just sends out a signal value that increases by one with each sample. So, if you send
the output of count~—a steady stream of increasing numbers—to the input of index~—which
 106

Tutorial 13 Sampling: Recording and playback
will treat them as sample numbers—index~ will read straight through the buffer~, playing it back
at the current sampling rate.

Play the sound in a buffer~ by looking up each sample and sending it to the dac~

• Click on the button marked “Play” to play the sound in the buffer~. You can change the start-
ing sample number by sending a different starting number into count~.

This combination of count~ and index~ lets you specify a precise sample number in the buffer~
where you want to start playback. However, if you want to specify starting and ending points in
the buffer~ in terms of milliseconds, and/or you want to play the sound back at a different
speed—or even backward—then the play~ object is more appropriate.

Variable speed playback: play~

The play~ object receives a signal in its inlet which indicates a position, in milliseconds, in its asso-
ciated buffer~; play~ sends out the signal value it finds at that point in the buffer~. Unlike index~,
though, when play~ receives a position that falls between two samples in the buffer~ it interpolates
between those two values. For this reason, you can read through a buffer~ at any speed by sending
an increasing or decreasing signal to play~, and it will interpolate between samples as necessary.
(Theoretically, you could use index~ in a similar manner, but it does not interpolate between sam-
ples so the sound fidelity would be considerably worse.)
107

Tutorial 13 Sampling: Recording and playback
The most obvious way to use the play~ object is to send it a linearly increasing (or decreasing) sig-
nal from a line~ object, as shown in the tutorial patch.

Read through a buffer~, from one position to another, in a given amount of time

Reading from 0 to 2000 (millisecond position in the buffer~) in a time of 2000 ms produces nor-
mal playback. Reading from 0 to 2000 in 4000 ms produces half-speed playback, and so on.

• Click on the different message box objects to hear the sound played in various speed/direction
combinations. Turn audio off when you have finished.

Although not demonstrated in this tutorial patch, it’s worth noting that you could use other sig-
nals as input to play~ in order to achieve accelerations and decelerations, such as an exponential
curve from a curve~ object or even an appropriately scaled sinusoid from a cycle~ object.

Summary

Sound coming into the computer enters MSP via the adc~ object. The record~ object stores the
incoming sound—or any other signal—in a buffer~. You can record into the entire buffer~, or
you can record into any portion of it by specifying start and end buffer positions in the two right-
most inlets of record~. For simple normal-speed playback of the sound in a buffer~, you can use
the count~ and index~ objects to read through it at the current sampling rate. Use the line~ and
play~ objects for variable-speed playback and/or for reading through the buffer~ in both direc-
tions.

See Also

adc~ Audio input and on/off
ezadc~ Audio on/off; analog-to-digital converter
index~ Sample playback without interpolation
play~ Position-based sample playback
record~ Record sound into a buffer
 108

Tutorial 14
Sampling: Playback with loops

Playing samples with groove~

The groove~ object is the most versatile object for playing sound from a buffer~. You can specify
the buffer~ to read, the starting point, the playback speed (either forward or backward), and start-
ing and ending points for a repeating loop within the sample. As with other objects that read from
a buffer~, groove~ accesses the buffer~ remotely, without patch cords, by sharing its name.

A standard configuration for the use of groove~

In the example above, the message loop 1 turns looping on, the start time of 0 ms indicates the
beginning of the buffer~, the playback speed of 1 means to play forward at normal speed, and the
loop start and end times mean that (because looping is turned on) when groove~ reaches a point
860 milliseconds into the buffer~ it will return to a point 572 ms into the buffer~ and continue play-
ing from there. Notice that the start time must be received as a float (or int), and the playback speed
must be received as a signal. This means the speed can be varied continuously by sending a time-
varying signal in the left inlet.

Whenever a new start time is received, groove~ goes immediately to that time in the buffer~ and
continues playing from there at the current speed. When groove~ receives the message loop 1 or
startloop it goes to the beginning of the loop and begins playing at the current speed. (Note that
loop points are ignored when groove~ is playing in reverse, so this does not work when the play-
back speed is negative.) groove~ stops when it reaches the end of the buffer~ (or the beginning if
it’s playing backward), or when it receives a speed of 0.

In the tutorial patch, three different buffer~ objects are loaded with AIFF files so that a single
groove~ object can switch between various samples instantly. The message set, followed by the
name of a buffer~, refers groove~ to that new buffer~ immediately. (If groove~ always referred to
109

Tutorial 14 Sampling: Playback with loops
the same buffer~, and we used read messages to change the contents of the buffer~, some time
would be needed to open and load each new file.)

Refer groove~ to a different buffer~ with a set message

• Click on the preset object to play the samples in different ways.

The first preset just functions as an “Off ” button. The next three presets play the three buffer~
objects at normal speed without looping. The rest of the presets demonstrate a variety of sound
possibilities using different playback speeds on different excerpts of the buffered files, with or
without looping.

• You may want to experiment with your own settings by changing the user interface objects
directly.

You can control all aspects of the playback by changing the user interface object settings

If you want to create smooth undetectable loops with groove~, you can use the loopinterp message
to enable crossfades between the end of a loop and the beginning of the next pass through the loop
to smooth out the transition back to the start point (see the groove~ reference page for more infor-
mation on this message). If the buffer~ contains an AIFF file that has its own loop points—points
established in a separate audio editing program—there is a way to use those loop points to set the
loop points of groove~. The info~ object can report the loop points of an AIFF file contained in a
buffer~, and you can send those loop start and end times directly into groove~.

Using info~ to get loop point information from an AIFF file

Summary

The groove~ object is the most versatile way to play sound from a buffer~. You can specify the
buffer~ to read, the starting point, the playback speed (either forward or backward), and starting
 110

Tutorial 14 Sampling: Playback with loops
and ending points for a repeating loop within the sample. If the buffer~ contains an AIFF file that
has its own pre-established loop points, you can use the info~ object to get those loop times and
send them to groove~. The playback speed of groove~ is determined by the value of the signal
coming in its left inlet. You can set the current buffer position of groove~ by sending a float time
value in the left inlet.

See Also

buffer~ Store audio samples
groove~ Variable-rate looping sample playback
sig~ Constant signal of a number
111

Tutorial 15
Sampling: Variable-length wavetable

Use any part of a buffer~ as a wavetable: wave~

As was shown in Tutorial 3, the cycle~ object can use 512 samples of a buffer~ as a wavetable
through which it reads repeatedly to play a periodically repeating tone. The wave~ object is an
extension of that idea; it allows you to use any section of a buffer~ as a wavetable.

The starting and ending points within the buffer~ are determined by the number or signal
received in the middle and right inlets of wave~. As a signal in the wave~ object’s left inlet goes
from 0 to 1, wave~ sends out the contents of the buffer~ from the specified start point to the end
point. The phasor~ object, ramping repeatedly from 0 to 1, is the obvious choice as an input signal
for the left inlet of wave~.

phasor~ drives wave~ through the section of the buffer~ specified as the wavetable

In a standard implementation of wavetable synthesis, the wavetable (512 samples in the case of
cycle~, or a section of any length in the case of wave~) would be one single cycle of a waveform,
and the frequency of the cycle~ object (or the phasor~ driving the wave~) would determine the
fundamental frequency of the tone. In the case of wave~, however, the wavetable could contain
virtually anything (an entire spoken sentence, for example).

wave~ yields rather unpredictable results compared to some of the more traditional sound gener-
ation ideas presented so far, but with some experimentation you can find a great variety of timbres
using wave~. In this tutorial patch, you will see some ways of reading the contents of a buffer~
with wave~.

Synthesis with a segment of sampled sound

The tutorial patch is designed to let you try three different ways of driving wave~: with a repeating
ramp signal (phasor~), a sinusoid (cycle~), or a single ramp (line~). The bottom part of the
Patcher window is devoted to the basic implementation of wave~, and the upper part of the win-
112

Tutorial 15 Sampling: Variable-length wavetable
dow contains the three methods of reading through the wavetable. First, let’s look at the bottom
half of the window.

wave~ can use an excerpt of any length from either buffer~ as its wavetable

• Click on the toggle to turn audio on. Set the amplitude to some level greater than 0. Set the end
time of the wavetable to 782 (the length in milliseconds of the file isthatyou.aiff).

With these settings, wave~ will use the entire contents of buffer~ words isthatyou.aiff as its wavetable.
Now we are ready to read through the wavetable.

• Choose “Read forward” from the pop-up umenu in the middle of the window. This will open
the first signal inlet of the selector~, allowing wave~ to be controlled by the phasor~ object.

Read through wave~ by going repeatedly from 0 to 1 with a phasor~ object

• Set the number box marked “Range” to 1. This sets the amplitude of the phasor~, so it effec-
tively determines what fraction of the wavetable will be used. Set the number box marked “Fre-
quency” to 2. The phasor~ now goes from 0 to 1 two times per second, so you should hear
wave~ reading through the buffer~ every half second.
113

Tutorial 15 Sampling: Variable-length wavetable
• Try a few different sub-audio frequency values for the phasor~, to read through the buffer~ at
different speeds. You can change the portion of the buffer~ being read, either by changing the
“Range” value, or by changing the start and end times of the wave~. Try audio frequencies for
the phasor~ as well.

Notice that the rate of the phasor~ often has no obvious relationship to the perceived pitch,
because the contents of the wavetable do not represent a single cycle of a waveform. Furthermore,
such rapid repetition of an arbitrarily selected segment of a complex sample has a very high likeli-
hood of producing frequencies well in excess of the Nyquist rate, which will be folded back into
the audible range in unpredictable ways.

• Click on the message box to refer wave~ to the buffer~ chords object.

This changes the contents of the wavetable (because wave~ now accesses a different buffer~), and
sets the maximum value of the “End time” number box equal to the length of the file sacre.aiff.
Notice an additional little programming trick—shown in the example below—employed to pre-
vent the user from entering inappropriate start and end times for wave~.

Each time the start or end time is changed, it revises the limits of the other number box

• With this new buffer~, experiment further by reading different length segments of the buffer~
at various rates.

Using wave~ as a transfer function

The buffer~ object is essentially a lookup table that can be accessed in different ways by other
objects. In Tutorial 12 the lookup~ object was used to treat a segment of a buffer~ as a transfer
function, with a cosine wave as its input. The wave~ object can be used similarly. The only differ-
ence is that its input must range from 0 to 1, whereas lookup~ expects input in the range from -1 to
1. To use wave~ in this way, then, we must scale and offset the incoming cosine wave so that it
ranges from 0 to 1.

• Set the start and end times of wave~ close together, so that only a few milliseconds of sound
are being used for the wavetable. Choose “Read back and forth” from the pop-up umenu in the
 114

Tutorial 15 Sampling: Variable-length wavetable
middle of the window. This opens the second signal inlet of the selector~, allowing wave~ to
be controlled by the cycle~ object.

cycle~, scaled and offset to range from 0 to 1, reads back and forth in the wavetable

• Set the “Range” number box to a very small value such as 0.01 at first, to limit the cycle~ object’s
amplitude. This way, cycle~ will use a very small segment of the wavetable as the transfer func-
tion. Set the frequency of cycle~ to 220 Hz. You will probably hear a rich tone with a funda-
mental frequency of 220 Hz. Drag on the “Range” number box to change the amplitude of the
cosine wave; the timbre will change accordingly. You can also experiment with different wavet-
able lengths by changing the start and end times of wave~. Sub-audio frequencies for the
cycle~ object will produce unusual vibrato-like effects as it scans back and forth through the
wavetable.

Play the segment as a note

Because wave~ accepts any signal input in the rage 0 to 1, you can read through the wavetable just
once by sending wave~ a ramp signal from 0 to 1 (or backward, from 1 to 0). Other objects such as
play~ and groove~ are better suited for this purpose, but it is nevertheless possible with wave~.

• Choose “Read once” from the pop-up umenu in the middle of the window. This opens the
third signal inlet of the selector~, allowing wave~ to be controlled by the line~ object. Set start
and end times for your wavetable, set the “Duration” number box to 1000, and click on the but-
ton to traverse the wavetable in one second. Experiment with both buffer~ objects, using vari-
ous wavetable lengths and durations.

Changing the wavetable dynamically

The cycle~ object in the right part of the Patcher window is used to add a sinusoidal position
change to the wavetable. As the cosine wave rises and falls, the start and end times of the wavetable
increase and decrease. As a result, the wavetable is constantly shifting its position in the buffer~, in
a sinusoidally varying manner. Sonically this produces a unique sort of vibrato, not of fundamen-
115

Tutorial 15 Sampling: Variable-length wavetable
tal frequency but of timbre. The wavetable length and the rate at which it is being read stay the
same, but the wavetable’s contents are continually changing.

Shifting the wavetable by adding a sinusoidal offset to the start and end times

• Set the “Shift amount” to 0.35, and set the “Shift rate” to 6. Set the start time of the wavetable to
102 and the end time to 109. Click on the message box to refer wave~ to the buffer~ chords
object. Choose “Read forward” from the pop-up umenu. Set the frequency of the phasor~ to
an audio rate such as 110, and set its range to 1. You should hear a vibrato-like timbre change at
the rate of 6 Hz. Experiment with varying the shift rate and the shift amount. When you are
done, click on the toggle to turn audio off.

Summary

Any segment of the contents of a buffer~ can be used as a wavetable for the wave~ object. You can
read through the wavetable by sending a signal to wave~ that goes from 0 to 1. So, by connecting
the output of a phasor~ object to the input of wave~, you can read through the wavetable repeat-
edly at a sub-audio or audio rate. You can also scale and offset the output of a cycle~ object so that
it is in the range 0 to 1, and use that as input to wave~. This treats the wavetable as a transfer func-
tion, and results in waveshaping synthesis. The position of the wavetable in the buffer~ can be var-
ied dynamically—by adding a sinusoidal offset to the start and end times of wave~, for
example—resulting in unique sorts of timbre modulation.

See Also

buffer~ Store audio samples
phasor~ Sawtooth wave generator
wave~ Variable-size wavetable
 116

Tutorial 16
Sampling: Record and play audio files

Playing from memory vs. playing from disk

You have already seen how to store sound in memory—in a buffer~—by recording into it directly
or by reading in a pre-recorded audio file. Once the sound is in memory, it can be accessed in a
variety of ways with cycle~, lookup~, index~, play~, groove~, wave~, etc.

The main limitation of buffer~ for storing samples, of course, is the amount of unused RAM avail-
able to the Max application. You can only store as much sound in memory as you have memory to
hold it. For playing and recording very large amounts of audio data, it is more reasonable to use
the hard disk for storage. But it takes more time to access the hard disk than to access RAM; there-
fore, even when playing from the hard disk, MSP still needs to create a small buffer to preload
some of the sound into memory. That way, MSP can play the preloaded sound while it is getting
more sound from the hard disk, without undue delay or discontinuities due to the time needed to
access the disk.

Record audio files: sfrecord~

MSP has objects for recording directly into, and playing directly from, an AIFF file: sfrecord~ and
sfplay~. Recording an audio file is particularly easy, you just open a file, begin recording, and stop
recording. (You don’t even need to close the file; sfrecord~ takes care of that for you.) In the upper
right corner of the Patcher window there is a patch for recording files.

Recording audio into an audio file on disk

sfrecord~ records to disk whatever signal data it receives in its inlets. The signal data can come
directly from an adc~ or ezadc~ object, or from any other MSP object.

• Click on the message box marked “Create an AIFF file”. You will be shown a Save As dialog box
for naming your file. (Make sure you save the file on a volume with sufficient free space.) Nav-
igate to the folder where you want to store the sound, name the file, and click Save. Turn audio
on. Click on the toggle to begin recording; click on it again when you have finished.

Play audio files: sfplay~

In the left part of the Patcher window there is a patch for playing audio files. The basic usage of
sfplay~ requires only a few objects, as shown in the following example. To play a file, you just have
117

Tutorial 16 Sampling: Record and play sound files
to open it and start sfplay~. The audio output of sfplay~ can be sent directly to dac~ or ezdac~,
and/or anywhere else in MSP.

Simple implementation of audio file playback

 • Click on the open message box marked “Set the current file”, and open the audio file you have
just recorded. Then (with audio on) click on the toggle marked “Play/Stop” to hear your file.

Play excerpts on cue

Because sfplay~ does not need to load an entire audio file into memory, you can actually have
many files open in the same sfplay~ object, and play any of them (or any portion of them) on cue.
The most recently opened file is considered by sfplay~ to be the “current” file, and that is the file it
will play when it receives the message 1.

• Click on the remaining open message boxes to open some other audio files, and then click on
the message box marked “Define cues, 2 to 9”.

The preload message to sfplay~ specifies an entire file or a portion of a file, and assigns it a cue num-
ber. From then on, every time sfplay~ receives that number, it will play that cue. In the example
patch, cues 2, 3, and 4 play entire files, cue 5 plays the first 270 milliseconds of sacre.aiff, and so on.
Cue 1 is always reserved for playing the current (most recently opened) file, and cue 0 is reserved
for stopping sfplay~.

Whenever sfplay~ receives a cue, it stops whatever it is playing and immediately plays the new cue.
(You can also send sfplay~ a queue of cues, by sending it a list of numbers, and it will play each cue
in succession.) Each preload message actually creates a small buffer containing the audio data for
the beginning of the cue, so playback can start immediately upon receipt of the cue number.
 118

Tutorial 16 Sampling: Record and play sound files
Now that cues 0 through 9 are defined, you can play different audio excerpts by sending sfplay~
those numbers. The upper-left portion of the patch permits you to type those numbers directly
from the computer keyboard.

ASCII codes from the number keys used to send cues to sfplay~

• Click on the toggle marked “Keyplay On/Off ”. Type number keys to play the different pre-
defined cues. Turn “Keyplay” off when you are done.

Try different file excerpts

Before you define a cue, you will probably need to listen to segments of the file to determine the
precise start and end times you want. You can use the seek message to hear any segment of the cur-
rent file.

• Open your own audio file again (or any other audio file) to make it the current file. In the right
portion of this patch, enter an end time for the seek message. The excerpt you have specified
will begin playing. Try different start and end times.

Once you find start and end times you like, you could use them in a preload message to establish a
cue. Because sfplay~ can’t know in advance what excerpt it will be required to play in response to a
seek message, it can’t preload the excerpt. There will be a slight delay while it accesses the hard disk
before it begins playing. For that reason, seek is best used as an auditioning tool; preloaded cues are
better for performance situations where immediate playback is more critical.

Trigger an event at the end of a file

The patch in the lower right portion of the Patcher window demonstrates the use of the right out-
let of sfplay~. When a cue is done playing (or when it is stopped with a 0 message), sfplay~ sends a
119

Tutorial 16 Sampling: Record and play sound files
bang out the right outlet. In this example patch, the bang is used to trigger the next (randomly cho-
sen) cue, so sfplay~ effectively restarts itself when each cue is done.

When a cue is completed, sfplay~ triggers the next cue

Note the importance of the gate object in this patch. If it were not present, there would be no way
to stop sfplay~ because each 0 cue would trigger another non-zero cue. The gate must be closed
before the 0 cue is sent to sfplay~.

• In the patch marked “Play random excerpts”, click on the message box to preload the cues,
then click on the toggle to start the process. To stop it, click on the toggle again. Turn audio off.

Summary

For large and/or numerous audio samples, it is often better to read the samples from the hard disk
than to try to load them all into RAM. The objects sfrecord~ and sfplay~ provide a simple way to
record and play audio files to and from the hard disk. The sfplay~ object can have many audio files
open at once. Using the preload message, you can pre-define ready cues for playing specific files or
sections of files. The seek message to sfplay~ lets you try different start and end points for a cue.
When a cue is done playing (or is stopped) sfplay~ sends a bang out its right outlet. This bang can
be used to trigger other processes, including sending sfplay~ its next cue.

See Also

sfplay~ Play audio file from disk
sfrecord~ Record to audio file on disk
 120

Tutorial 17
Sampling: Review

A sampling exercise

In this chapter we suggest an exercise to help you check your understanding of how to sample and
play audio. Try completing this exercise in a new file of your own before you check the solution
given in the example patch. (But don’t have the example Patcher open while you design your own
patch, or you will hear both patches when you turn audio on.) The exercise is to design a patch in
which:

• Typing the a key on the computer keyboard turns audio on. Typing a again toggles audio off.

• Typing r on the computer keyboard makes a one-second recording of whatever audio is com-
ing into the computer (from the input jacks or from the internal CD player).

• Typing p plays the recording. Playback is to be at half speed, so that the sound lasts two sec-
onds.

• An amplitude envelope is applied to the sample when it is played, tapering the amplitude
slightly at the beginning and end so that there are no sudden clicks heard at either end of the
sample.

• The sample is played back with a 3 Hz vibrato added to it. The depth of the vibrato is one
semitone (a factor of 2±1/12) up and down.

Hints

You will need to store the sound in a buffer~ and play it back from memory.

You can record directly into the buffer~ with record~. (See Tutorial 13.) The input to record~ will
come from adc~ (or ezadc~).

The two obvious choices for playing a sample from a buffer~ at half speed are play~ and groove~.
However, because we want to add vibrato to the sound—by continuously varying the playback
speed—the better choice is groove~, which uses a (possibly time-varying) signal to control its
playback speed directly. (See Tutorial 14.)

The amplitude envelope is best generated by a line~ object which is sending its output to a *~
object to scale the amplitude of the output signal (coming from groove~). You might want to use a
function object to draw the envelope, and send its output to line~ to describe the envelope. (See
Tutorial 7.)

The computer keyboard will need to trigger messages to the objects adc~, record~, groove~, and
line~ (or function) in order to perform the required tasks. Use the key object to get the keystrokes,
and use select to detect the keys you want to use.
121

Tutorial 17 Sampling: Review
Use a sinusoidal wave from a cycle~ object to apply vibrato to the sample. The frequency of the
cycle~ will determine the rate of the vibrato, and the amplitude of the sinusoid will determine the
depth of vibrato. Therefore, you will need to scale the cycle~ object’s amplitude with a *~ object to
achieve the proper vibrato depth.

In the discussion of vibrato in Tutorial 10, we created vibrato by adding the output of the modulat-
ing oscillator to the frequency input of the carrier oscillator. However, two things are different in
this exercise. First of all, the modulating oscillator needs to modulate the playback speed of
groove~ rather than the frequency of another cycle~ object. Second, adding the output of the
modulator to the input of the carrier—as in Tutorial 10—creates a vibrato of equal frequency
above and below the carrier frequency, but does not create a vibrato of equal pitch up and down (as
required in this exercise). A change in pitch is achieved by multiplying the carrier frequency by a
certain amount, rather than by adding an amount to it.

To raise the pitch of a tone by one semitone, you must multiply its frequency by the twelfth root of
2, which is a factor of 2 to the 1/12 power (approximately 1.06). To lower the pitch of a tone by one
semitone, you must multiply its frequency by 2 to the -1/12 power (approximately 0.944). To calcu-
late a signal value that changes continuously within this range, you may need to use an MSP object
not yet discussed, pow~. Consult its description in the Objects section of this manual for details.

Solution

• Scroll the example Patcher window all the way to the right to see a solution to this exercise.

Solution to the exercise for recording and playing an audio sample
 122

Tutorial 17 Sampling: Review
The arguments to the buffer~ object specify a length in milliseconds (1000) and a number of chan-
nels (2). This determines how much memory will initially be allocated to the buffer~.

Set name, length, and channels of the buffer~

Since the memory allocated in the buffer~ is limited to one second, there is no need to tell the
record~ object to stop when you record into the buffer~. It stops when it reaches the end of the
buffer~.

The keystrokes from the computer keyboard are reported by key, and the select object is used to
detect the a, r, and p keys. The bangs from select trigger the necessary messages to adc~, record~,
and groove~.

Keystrokes are detected and used to send messages to MSP objects

The keystroke p is also used to trigger the amplitude envelope at the same time as the sample is
played. This envelope is used to scale the output of groove~.

A two-second envelope tapers the amplitude at the beginning and end of the sample

A sig~ 0.5 object sets the basic playback speed of groove~ at half speed. The amplitude of a 3 Hz
cosine wave is scaled by a factor of 0.083333 (equal to 1/12, but more computationally efficient than
dividing by 12) so that it varies from -1/12 to 1/12. This sinusoidal signal is used as the exponent in a
123

Tutorial 17 Sampling: Review
power function in pow~ (2 to the power of the input), and the result is used as the factor by which
to multiply the playback speed.

Play at half speed, ± one semitone
 124

Tutorial 18
MIDI control: Mapping MIDI to MSP

MIDI range vs. MSP range

One of the greatest assets of MSP is the ease with which one can combine MIDI and digital signal
processing. The great variety of available MIDI controllers means that you have many choices for
the instrument you want to use to control sounds in MSP. Because Max is already a well developed
environment for MIDI programming, and because MSP is so fully integrated into that environ-
ment, it is not difficult to use MIDI to control parameters in MSP.

The main challenge in designing programs that use MIDI to control MSP is to reconcile the
numerical ranges needed for the two types of data. MIDI data bytes are exclusively integers in the
range 0 to 127. For that reason, most numerical processing in Max is done with integers and most
Max objects (especially user interface objects) deal primarily with integers. In MSP, on the other
hand, audio signal values are most commonly decimal numbers between -1.0 and 1.0, and many
other values (such as frequencies, for example) require a wide range and precision to several deci-
mal places. Therefore, almost all numerical processing in MSP is done with floating-point (deci-
mal) numbers.

Often this “incompatibility” can be easily reconciled by linear mapping of one range of values
(such as MIDI data values 0 to 127) into another range (such as 0 to 1 expected in the inlets of
many MSP objects). Linear mapping is explained in Tutorial 29 of the Tutorials and Topics man-
ual from the Max documentation, and is reviewed in this chapter. In many other cases, however,
you may need to map the linear numerical range of a MIDI data byte to some nonlinear aspect of
human perception—such as our perception of a 12-semitone increase in pitch as a power of 2
increase in frequency, etc. This requires other types of mapping; some examples are explored in
this tutorial chapter.

Controlling synthesis parameters with MIDI

In this tutorial patch, we use MIDI continuous controller messages to control several different
parameters in an FM synthesis patch. The synthesis is performed in MSP by the subpatch sim-
pleFM~ which was introduced in Tutorial 11, and we map MIDI controller 1 (the mod wheel) to
affect, in turn, its amplitude, modulation index, vibrato depth, vibrato rate, and pitch bend.

An FM synthesis subpatch is the sound generator to be modified by MIDI
125

Tutorial 18 MIDI control: Mapping MIDI to MSP
If we were designing a real performance instrument, we would probably control each of these
parameters with a separate type of MIDI message—controller 7 for amplitude, controller 1 for
vibrato depth, pitchbend for pitch bend, and so on. In this patch, however, we use the mod wheel
controller for everything, to ensure that the patch will work for almost any MIDI keyboard. While
this patch is not a model of good synthesizer design, it does let you isolate each parameter and
control it with the mod wheel.

In the lower right corner of the Patcher window, you can see that keys 0 to 5 of the computer key-
board can be used to choose an item in the pop-up umenu at the top of the window.

Use ASCII from the computer keyboard to assign the function of the MIDI controller

The umenu sends the chosen item number to gate to open one of its outlets, thus directing the
controller values from the mod wheel to a specific place in the signal network.

gate directs the control messages to a specific place in the signal network

We will look at the special mapping requirements of each parameter individually. But first, let’s
review the formula for linear mapping.

Linear mapping

The problem of linear mapping is this: Given a value x which lies in a range from xmin to xmax,
find the value y that occupies a comparable location in the range ymin to ymax. For example, 3
occupies a comparable location within the range 0 to 4 as 0.45 occupies within the range 0 to 0.6.
This problem can be solved with the formula:

y = ((x - xmin) * (ymax - ymin) ÷ (xmax - xmin)) + ymin

For this tutorial, we designed a subpatch called map to solve the equation. map receives an x value
in its left inlet, and—based on the values for xmin, xmax, ymin, and ymax received in its other
 126

Tutorial 18 MIDI control: Mapping MIDI to MSP
inlets—it sends out the correct value for y. This equation will allow us to map the range of control-
ler values—0 to 127—onto various other ranges needed for the signal network. The map subpatch
appears in the upper right area of the Patcher window.

The contents of the map subpatch: the linear mapping formula expressed in an expr object

Once we have scaled the range of control values with map, some additional mapping may be nec-
essary to suit various signal processing purposes, as you will see.

Mapping MIDI to amplitude

As noted in Tutorial 4, we perceive relative amplitude on a multiplicative rather than an additive
scale. For example we hear the same relationship between amplitudes of 0.5 and 0.25 (a factor of
1/2, but a difference of 0.25) as we do between amplitudes of 0.12 and 0.06 (again a factor of 1/2, but
a difference of only 0.06). For this reason, if we want to express relative amplitude on a linear scale
(using the MIDI values 0 to 127), it is more appropriate to use decibels.

• Click on the toggle to turn audio on. Type the number 5 (or choose “Amplitude” from the
umenu) to direct the controller values to affect the output amplitude.

The item number chosen in the umenu also recalls a preset in the preset object, which provides
range values to map. In this case, ymin is -80 and ymax is 0, so as the mod wheel goes from 0 to 127
the amplitude goes from -80 dB to 0 dB (full amplitude). The decibel values are converted to
amplitude in the subpatch called dBtoA. This converts a straight line into the exponential curve
necessary for a smooth increase in perceived loudness.

The contents of the dBtoA subpatch

• Move the mod wheel on your MIDI keyboard to change the amplitude of the tone. Set the
amplitude to a comfortable listening level.
127

Tutorial 18 MIDI control: Mapping MIDI to MSP
With this mapping, the amplitude changes by approximately a factor of 2 every time the controller
value changes by 10. This permits the same amount of control at low amplitudes as at high ampli-
tudes (which would not be the case with a straight linear mapping).

Mapping MIDI to frequency

Our perception of relative pitch is likewise multiplicative rather than additive with respect to fre-
quency. In order for us to hear equal spacings of pitch, the frequency must change in equal powers
of 2. (See the discussions of pitch-to-frequency conversion in Tutorial 17 and Tutorial 19.)

• Type the number 1 (or choose “Octave Pitch Bend” from the umenu) to direct the controller
values to affect the carrier frequency. Move the mod wheel to bend the pitch upward as much
as one octave, and back down to the original frequency.

In order for the mod wheel to perform a pitch bend of one octave, we map its range onto the range
0 to 1. This number is then used as the exponent in a power of 2 function and multiplied times the
fundamental frequency in expr.

Octave bend factor ranges from 20 to 21

20 = 1, and 21 = 2, so as the control value goes from 0 to 1 the carrier frequency increases from 220
to 440, which is to say up an octave. The increase in frequency from 220 to 440 follows an expo-
nential curve, which produces a linear increase in perceived pitch from A to A.

Mapping MIDI to modulation index

Mapping the MIDI controller to the modulation index of the FM instrument is much simpler,
because a linear control is what’s called for. Once the controller values are converted by the map
subpatch, no further modification is needed. The mod wheel varies the modulation index from 0
(no modulation) to 24 (extreme modulation).

• Type the number 4 (or choose “Modulation Index” from the umenu) to direct the controller
values to affect the modulation index. Move the mod wheel to change the timbre of the tone.

Mapping MIDI to vibrato

This instrument has an additional low-frequency oscillator (LFO) for adding vibrato to the tone
by modulating the carrier frequency at a sub-audio rate. In order for the depth of the vibrato to be
 128

Tutorial 18 MIDI control: Mapping MIDI to MSP
equal above and below the fundamental frequency, we use the output of the LFO as the exponent
of a power function in pow~.

Calculate the vibrato factor

The base of the power function (controlled by the mod wheel) varies from 1 to 2. When the base is
1 there is no vibrato; when the base is 2 the vibrato is ± one octave.

• You’ll need to set both the vibrato rate and the vibrato depth before hearing the vibrato effect.
Type 2 and move the mod wheel to set a non-zero vibrato rate. Then type 3 and move the mod
wheel to vary the depth of the vibrato.

The clumsiness of this process (re-assigning the mod wheel to each parameter in turn) empha-
sizes the need for separate MIDI controllers for different parameters (or perhaps linked simulta-
neous control of more than one parameter with the same MIDI message). In a truly responsive
instrument, you would want to be able to control all of these parameters at once. The next chapter
shows a more realistic assignment of MIDI to MSP.

Summary

MIDI messages can easily be used to control parameters in MSP instruments, provided that the
MIDI data is mapped into the proper range. The map subpatch implements the linear mapping
equation. When using MIDI to control parameters that affect frequency and amplitude in MSP,
the linear range of MIDI data from 0 to 127 must be mapped to an exponential curve if you want
to produce linear variation of perceived pitch and loudness. The dBtoA subpatch maps a linear
range of decibels onto an exponential amplitude curve. The pow~ object allows exponential cal-
culations with signals.
129

Tutorial 19
MIDI control: Synthesizer

Implementing standard MIDI messages

In this chapter we’ll demonstrate how to implement MIDI control of a synthesis instrument built
in MSP. The example instrument is a MIDI FM synthesizer with velocity sensitivity, pitch bend,
and mod wheel control of timbre. To keep the example relatively simple, we use only a single type
of FM sound (a single “patch”, in synthesizer parlance), and only 2-voice polyphony.

The main issues involved in MIDI control of an MSP synthesizer are

• converting a MIDI key number into the proper equivalent frequency

• converting a MIDI pitch bend value into an appropriate frequency-scaling factor

• converting a MIDI controller value into a modulator parameter (such as vibrator rate, vibrato
depth, etc.).

Additionally, since a given MSP object can only play one note at a time, we will need to handle
simultaneous MIDI note messages gracefully.

Polyphony

Each sound-generating object in MSP—an oscillator such as cycle~ or phasor~, or a sample player
such as groove~ or play~—can only play one note at a time. Therefore, to play more than one note
at a time in MSP you need to have more than one sound-generating object. In this tutorial patch,
we make two identical copies of the basic synthesis signal network, and route MIDI note messages
to one or the other of them. This 2-voice polyphony allows some overlap of consecutive notes,
which normally occurs in legato keyboard performance of a melody.

Assign a voice number with poly to play polyphonic music

The poly object assigns a voice number—1 or 2 in this case—to each incoming note message, and
if more than two keys are held down at a time poly provides note-off messages for the earlier notes
so that the later notes can be played. The voice number, key number, and velocity are packed
together in a three-item list, and the route object uses the voice number to send the key number
130

Tutorial 19 MIDI control: Synthesizer
and velocity to one synthesizer “voice” or the other. If your computer is fast enough, of course, you
can design synthesizers with many more voices. You can test the capability of your computer by
adding more and more voices and observing the CPU Utilization in the DSP Status window.

There is another way to manage polyphonic voice allocation in MSP—the poly~ object. We’ll look
at the elegant and efficient poly~ object (and its helper objects in, in~, out, out~, and thispoly~) in
Tutorial 21; in the meantime, we’ll use the poly object to make polyphonic voice assignments for
the simple case required for this tutorial.

Pitch bend

In this instrument we use MIDI pitch bend values from 0 to 127 to bend the pitch of the instru-
ment up or down by two semitones. Bending the pitch of a note requires multiplying its (carrier)
frequency by some amount. For a bend of ±2 semitones, we will need to calculate a bend factor
ranging from 2-2/12 (approximately 0.891) to 22/12 (approximately 1.1225).

MIDI pitch bend presents a unique mapping problem because, according to the MIDI protocol, a
value of 64 is used to mean “no bend” but 64 is not precisely in the center between 0 and 127. (The
precise central value would be 63.5.) There are 64 values below 64 (0 to 63), but only 63 values
above it (65 to 127). We will therefore need to treat upward bends slightly differently from down-
ward bends.

Downward bend is calculated slightly differently from upward bend

The downward bend values (0 to 63) are offset by -64 and divided by 384 so that the maximum
downward bend (pitch bend value 0) produces an exponent of -64/384, which is equal to -2/12. The
upward bend values (64 to 127) are offset by -64 and divided by 378 so that an upward bend pro-
duces an exponent ranging from 0 to 63/378, which is equal to 2/12. The pack and line~ objects are
used to make the frequency factor change gradually over 20 milliseconds, to avoid creating the
effect of discrete stepwise changes in frequency.

Mod wheel

The mod wheel is used here to change the modulation index of our FM synthesis patch. The map-
ping is linear; we simply divide the MIDI controller values by 16 to map them into a range from 0
131

Tutorial 19 MIDI control: Synthesizer
to (nearly) 8. The precise way this range is used will be seen when we look at the synthesis instru-
ment itself.

Controller values mapped into the range 0 to 7.9375

The FM synthesizer

• Double-click on one of the synthFMvoice~ subpatch objects to open its Patcher window.

The basis for this FM synthesis subpatch is the simpleFM~ subpatch introduced (and explained) in
Tutorial 11. A typed-in argument is used to set the harmonicity ratio at 1, yielding a harmonic
spectrum. The MIDI messages will affect the frequency and the modulation index of this FM
sound. Let’s look first at the way MIDI note and pitch bend information is used to determine the
frequency.

MIDI-to-frequency conversion

The object mtof is not a signal object, but it is very handy for use in MSP. It converts a MIDI key
number into its equivalent frequency.

Calculate the frequency of a given pitch
 132

Tutorial 19 MIDI control: Synthesizer
This frequency value is multiplied by the bend factor which was calculated in the main patch, and
the result is used as the carrier frequency in the simpleFM~ subpatch.

The frequency of the note calculated from key number and pitch bend data

Velocity control of amplitude envelope

MIDI note-on velocity is used in this patch, as in most synthesizers, to control the amplitude
envelope. The tasks needed to accomplish this are

• Separate note-on velocities from note-off velocities.

• Map the range of note-on velocities—1 to 127—into an amplitude range from 0 to 1 (a non-
linear mapping is usually best).

• Map note-on velocity to rate of attack and decay of the envelope (in this case).
133

Tutorial 19 MIDI control: Synthesizer
The first task is achieved easily with a select 0 object, so that note-on velocity triggers a function
object to send the attack and decay shape, and note-off velocity returns the amplitude to 0, as
shown in the following example.

MIDI note-on velocity sets domain and range of the amplitude envelope

Before the function is triggered, however, we use the note-on velocity to set the domain and range,
which determine the duration and amplitude of the envelope. The expr object on the right calcu-
lates the amount of time in which the attack and decay portions of the envelope will occur. Maxi-
mum velocity of 127 will cause them to occur in 100 ms, while a much lesser velocity of 60 will
cause them to occur in 496 ms. Thus notes that are played more softly will have a slower attack, as
is the case with many wind and brass instruments.

The expr object on the left maps velocity to an exponential curve to determine the amplitude.

Velocity mapped to amplitude with an exponent of 4

If we used a straight linear mapping, MIDI velocities from 127 to 64 (the range in which most
notes are played) would cover only about a 6 dB amplitude range. The exponential mapping

1270

1.0

0
velocity

amplitude
 134

Tutorial 19 MIDI control: Synthesizer
increases this to about 24 dB, so that change in the upper range of velocities produces a greater
change in amplitude.

MIDI control of timbre

It’s often the case that acoustic instruments sound brighter (contain more high frequencies) when
they’re played more loudly. It therefore makes sense to have note-on velocity affect the timbre of
the sound as well as its loudness. In the case of brass instruments, the timbre changes very much in
correlation with amplitude, so in this patch we use the same envelope to control both the ampli-
tude and the modulation index of the FM instrument. The envelope is sent to a *~ object to scale it
into the proper range. The +~ 8 object ensures that the modulation index affected by velocity
ranges from 0 to 8 (when the note is played with maximum velocity). As we saw earlier, in the
main patch the modulation wheel can be used to increase the modulation index still further (add-
ing up to 8 more to the modulation index range). Thus, the combination of velocity and mod
wheel position can affect the modulation index substantially.

 Envelope and mod wheel control modulation index

• Listening only to MSP (with the volume turned down on your keyboard synth), play a single-
line melody on the MIDI keyboard. As you play, notice the effect that velocity has on the
amplitude, timbre, and rate of attack. Move the mod wheel upward to increase the over-all
brightness of the timbre. You can also use the mod wheel to modulate the timbre during the
sustain portion of the note. Try out the pitch bend wheel to confirm that it has the intended
effect on the frequency.

Summary

MIDI data can be used to control an MSP synthesis patch much like any other synthesizer. In nor-
mal instrument design, MIDI key number and pitch bend wheel position are both used to deter-
mine the pitch of a played note. The key number must be converted into frequency information
with the mtof object. The pitch bend value must be converted into the proper frequency bend fac-
tor, based on the twelfth-root-of-two per semitone used in equal temperament. Since the desig-
nated “no-bend” value of 64 is not in the precise center of the 0 to 127 range, upward bend must be
calculated slightly differently from downward bend.

Note-on velocity is generally used to determine the amplitude of the note, and triggers the attack
portion of the amplitude envelope. The note-off message triggers the release portion of the enve-
lope. The velocity value can be used to alter the range of the envelope (or to provide a factor for
scaling the amplitude). It is usually best to map velocity to amplitude exponentially rather than
135

Tutorial 19 MIDI control: Synthesizer
linearly. Velocity can also be used to alter the rate of the envelope, and/or other parameters such as
modulation index.

An MSP object can only make one sound at a time, so if you want to play more than one simulta-
neous note via MIDI you will need to assign each note a voice number with poly, and route each
voice to a different MSP object. In the next tutorial, we’ll use the poly object to make polyphonic
voice assignments for the simple case required for this tutorial. Tutorial 21 will introduce another
way to manage polyphonic voice allocation in MSP—the poly~ object.

See Also

mtof Convert a MIDI note number to frequency
poly Allocate notes to different voices
 136

Tutorial 20
MIDI control: Sampler

Basic sampler features

In this chapter we demonstrate a design for playing pre-recorded samples from a MIDI keyboard.
This design implements some of the main features of a basic sampler keyboard: assigning samples
to regions of the keyboard, specifying a base (untransposed) key location for each sample, playing
samples back with the proper transposition depending on which key is played, and making poly-
phonic voice assignments. For the sake of simplicity, this patch does not implement control from
the pitchbend wheel or mod wheel, but the method for doing so would not be much different from
that demonstrated in the previous two chapters.

In this patch we use the groove~ object to play samples back at various speeds, in some cases using
looped samples. As was noted in Tutorial 19, if we want a polyphonic instrument we need as many
sound-generating objects as we want separate simultaneous notes. In this tutorial patch, we use
four copies of a subpatch called samplervoice~ to supply four-voice polyphony. As in Tutorial 19—
we use a poly object to assign a voice number to each MIDI note, and we use route to send the note
information to the correct samplervoice~ subpatch.

poly assigns a voice number to each MIDI note, to send information to the correct subpatch

Before we examine the workings of the samplervoice~ subpatch, it will help to review what infor-
mation is needed to play a sample correctly.

1. The sound samples must be read into memory (in buffer~ objects), and a list of the memory
locations (buffer~ names) must be kept.

2. Each sample must be assigned to a region of the keyboard, and a list of the key assignments
must be kept.
137

Tutorial 20 MIDI control: Sampler
3. A list of the base key for each region—the key at which the sample should play back untrans-
posed—must be kept.

4. A list of the loop points for each sample (and whether looping should be on or off) must be
kept.

5. When a MIDI note message is received, and is routed to a samplervoice~ subpatch, the
groove~ object in that subpatch must first be told which buffer~ to read (based on the key
region being played), how fast to play the sample (based on the ratio between the frequency
being played and the base key frequency for that region), what loop points to use for that sam-
ple, whether looping is on or off, and what amplitude scaling factor to use based on the note-
on velocity.

In this patch, the samples are all read into memory when the patch is first loaded.

• Double-click on the p samplebuffers subpatch to open its Patcher window.

You can see that six samples have been loaded into buffer~ objects named sample1, sample2, etc. If,
in a performance situation, you need to have access to more samples than you can store at once in
RAM, you can use read messages with filename arguments to load new samples into buffer~
objects as needed.

• Close the subpatch window. Click on the message box marked “keyboard sample assign-
ments”.

This stores a set of numbered key regions in the funbuff object. (This information could have been
embedded in the funbuff and saved with the patch, but we left it in the message box here so that
you can see the contents of the funbuff.) MIDI key numbers 0 to 40 are key region 1, keys 41 to 47
are key region 2, etc. When a note-on message is received, the key number goes into funbuff, and
funbuff reports the key region number for that key. The key region number is used to look up other
vital information in the coll.

Note-on key number finds region number in funbuff, which looks up sample info in coll
 138

Tutorial 20 MIDI control: Sampler
• Double-click on the coll object to see its contents.

1, 24 sample1 0 0 0;
2, 33 sample2 0 0 0;
3, 50 sample3 0.136054 373.106537 1;
4, 67 sample4 60.204079 70.476189 1;
5, 84 sample5 0 0 0;
6, 108 sample6 0 0 0;

coll contains sample information for each key region

The key region number is used to index the information in coll. For example, whenever a key from
48 to 52 is pressed, funbuff sends out the number 3, and the information for key region 3 is recalled
and sent to the appropriate samplervoice~ subpatch. The data for each key region is: base key,
buffer~ name, loop start time, loop end time, and loop on/off flag.

The voice number from poly opens the correct outlet of gate so that the information from coll goes
to the right subpatch.

Playing a sample: the samplervoice~ subpatch

• Close the coll window, and double-click on one of the samplervoice~ subpatch objects to open
its Patcher window.

The samplervoice~ subpatch

You can see that the information from coll is unpacked in the subpatch and is sent to the proper
places to prepare the groove~ object for the note that is about to be played. This tells groove~ what
buffer~ to read, what loop times to use, and whether looping should be on or off. Then, when the
note information comes in the left inlet, the velocity is used to send an amplitude value to the *~
object, and the note-on key number is used (along with the base key number received from the
right inlet) to calculate the proper playback speed for groove~ and to trigger groove~ to begin
playback from time 0.
139

Tutorial 20 MIDI control: Sampler
MSP sample rate vs. audio file sample rate

• Close the subpatch window.

You’re almost ready to begin playing samples, but there is one more detail to attend to first. To save
storage space, the samples used in this patch are mono AIFF files with a sample rate of 22,050 Hz.
To hear them play properly you should set the sample rate of MSP to that rate.

• Double-click on the dac~ object to open the DSP Status window. Set the Sampling Rate to
22.050 kHz, then close the DSP Status window.

Note: Resetting the sampling rate may not be possible, depending on your hardware.

The difference between the sample rate of an audio file and the sample rate being used in MSP is a
potential problem when playing samples. This method of resolving the difference suffices in this
situation because the audio files are all at the same sample rate and because these samples are the
only sounds we will be playing in MSP. In other situations, however, you’re likely to want to play
samples (perhaps with different sampling rates) combined with other sounds in MSP, and you’ll
want to use the optimum sampling rate.

For such situations, you would be best advised to use the ratio between the audio file sample rate
and the MSP sample rate as an additional factor in determining the correct playback speed for
groove~. For example, if the sample rate of the audio file is half the sample rate being used by MSP,
then groove~ should play the sample half as fast.

You can use the objects info~ and dspstate~ to find out the sampling rate of the sample and of
MSP respectively, as demonstrated in the following example.

Calculate playback speed based on the sampling rates of the audio file and of MSP
 140

Tutorial 20 MIDI control: Sampler
The note-on key number is used first to recall the information for the sample to be played. The
name of a buffer~ is sent to groove~ and info~. Next, a bang is sent to dspstate~ and info~. Upon
receiving a bang, dspstate~ reports the sampling rate of MSP and info~ reports the sampling rate of
the AIFF file stored in the buffer~. In the lower left part of the example, you can see how this sam-
pling rate information is used as a factor in determining the correct playback speed for groove~.

Playing samples with MIDI

• Turn audio on and set the “Output Level” number box to a comfortable listening level. Play a
slow chromatic scale on the MIDI keyboard to hear the different samples and their arrange-
ment on the keyboard.

To arrange a unified single instrument sound across the whole keyboard, each key region should
contain a sample of a note from the same source. In this case, though, the samples are arranged on
the keyboard in such a way as to make available a full “band” consisting of drums, bass, and key-
board. This sort of multi-timbral keyboard layout is useful for simple keyboard splits (such as bass
in the left hand and piano in the right hand) or, as in this case, for accessing several different
sounds on a single MIDI channel with a sequencer.

• For an example of how a multi-timbral sample layout can be used by a sequencer, click on the
toggle marked “Play Sequence”. Click on it again when you want to stop the sequence. Turn
audio off. Double-click on the p sequence object to open the Patcher window of the subpatch.

The p sequence subpatch

The seq sampleseq.midi object contains a pre-recorded MIDI file. The midiparse object sends the
MIDI key number and velocity to poly in the main patch. Each time the sequence finishes playing,
a bang is sent out the right outlet of seq; the bang is used to restart the seq immediately, to play the
sequence as a continuous loop. When the sequence is stopped by the user, a bang is sent to midiflush
to turn off any notes currently being played.

• When you have finished with this patch, don’t forget to open the DSP Status window and
restore the Sampling Rate to its original setting.
141

Tutorial 20 MIDI control: Sampler
Summary

To play samples from the MIDI keyboard, load each sample into a buffer~ and play the samples
with groove~. For polyphonic sample playback, you will need one groove~ object per voice of
polyphony. You can route MIDI notes to different groove~ objects using voice assignments from
the poly object.

To assign each sample to a region of the MIDI keyboard, you will need to keep a list of key regions,
and for each key region you will need to keep information about which buffer~ to use, what trans-
position to use, what loop points to use, etc. A funbuff object is good for storing keyboard region
assignments. The various items of information about each sample can be best stored together as
lists in a coll, indexed by the key region number. When a note is played, the key region is looked up
in the funbuff, and that number is used to look up the sample information in coll.

The proper transposition for each note can be calculated by dividing the played frequency
(obtained with the mtof object) by the base frequency of the sample. The result is used as the play-
back speed for groove~. If the sampling rate of the recorded samples differs from the sampling rate
being used in MSP, that fact must be accounted for when playing the samples with groove~. Divid-
ing the audio file sampling rate by the MSP sampling rate provides the correct factor by which to
multiply the playback speed of groove~. The sampling rate of MSP can be obtained with the dsp-
state~ object. The sampling rate of the AIFF file in a buffer~ can be obtained with info~ (Remem-
ber—resetting the sampling rate may not be possible on your hardware).

Note-on velocity can be used to control the amplitude of the samples. An exponential mapping of
velocity to amplitude is usually best. Multi-timbral sample layouts on the keyboard can be useful
for playing many different sounds, especially from a sequencer. The end-of-file bang from the right
outlet of seq can be used to restart the seq to play it in a continuous loop. If the MIDI data goes
through a midiflush object, any notes that are on when the seq is stopped can be turned off by
sending a bang to midiflush.

See Also

buffer~ Store audio samples
dspstate~ Report current DSP setting
groove~ Variable-rate looping sample playback
poly~ Polyphony/DSP manager for patchers
 142

Tutorial 21
MIDI control: Using the poly~ object

A different approach to polyphony

In the last chapter, we demonstrated how to use the poly object to make polyphonic voice assign-
ments in a simple case. This chapter will describe a more elegant and efficient way to handle poly-
phonic voice allocation—the poly~ object.

In the example in the previous chapter, we created multiple copies of our sampler subpatch and
used the poly object’s voice numbering to route messages to different copies of the subpatch. Our
example could just as easily have used any kind of sound-producing subpatch. The following
example uses the subpatch littlesynth~ to implement a simple four-voice polyphonic synthesizer:

While this method works, it has two disadvantages. First, there’s a lot of housekeeping necessary to
duplicate and patch the multiple copies of littlesynth~ together. But there is also a problem in
terms of CPU usage. All four copies of the littlesynth~ subpatcher are always on, processing their
audio even when there is no sound being produced.

MSP 2.0, introduces a different way to solve the problem—the poly~ object allows you to create
and manage multiple copies of the same MSP subpatch all within one object. You can also control
the signal processing activity within each copy of the subpatch to conserve CPU resources.

The poly~ object

The poly~ object takes as its argument the name of a patcher file, followed by a number that speci-
fies the number of copies (or instances) of the patch to be created. You'll want to specify the same
143

Tutorial 21 MIDI control: Using the poly~ object
number of copies as you would have had to duplicate manually when implementing polyphony
the old-fashioned way. Here's an example of the poly~ object.

Double-clicking on the poly~ object opens up the subpatcher to show you the inside of the little-
beep~ object:

Let's look at the littlebeep~ patch for a minute. While you haven't seen the in, out~, or thispoly~
objects before, the rest of the patcher is pretty straightforward; it takes an incoming MIDI note
number, converts it to a frequency value using the mtof object, and outputs a sine wave at that fre-
quency with a duration of 140 milliseconds and an amplitude envelope supplied by the line~
object for 140 ms with an envelope on it.

But what about the in and out~ objects? Subpatches created for use in the poly~ object use special
objects for inlets and outlets. The objects in and out create control inlets and outlets, and the in~
and out~ objects create signal inlets and outlets. You specify which inlet is assigned to which
object by adding a number argument to the object—the in 1 object corresponds to the leftmost
inlet on the poly~ object, and so on. The poly~ object keeps track of the number of inlets and out-
lets it needs to create when you tell it which subpatch to load.

Messages sent to a poly~ object are directed to different instances of the subpatch dynamically
using the note and midinote messages, and manually using the target message.

When poly~ receives a note message in its left inlet, it scans through the copies of the subpatch it
has in memory until it finds one that is currently not busy, and then passes the message to it. A
subpatch instance can tell its parent poly~ object that it is busy using the thispoly~ object. The this-
poly~ object accepts either a signal or number in its inlet to set its busy state. A zero signal or a
value of 0 sent to its inlet tells the parent poly~ that this instance is available for note or midinote mes-
sages. A non-zero signal or value sent to its inlet tells the parent poly~ that the instance is busy; no
note or midinote messages will be sent to the object until it is no longer busy. The busy state was
intended to correspond to the duration of a note being played by the subpatcher instance, but it
 144

Tutorial 21 MIDI control: Using the poly~ object
could be used to mean anything. In the example above, when the audio level out of the *~ is non-
zero—that iteration of the subpatch is currently busy. Once the amplitude envelope out of line~
reaches zero and the sound stops, that subpatch's copy of thispoly~ tells poly~ that it is ready for
more input.

The thispoly~ object can also control the activity of signal processing within each copy of the sub-
patch. When the mute message is sent to thispoly~ followed by a 1, all signal processing in that sub-
patch stops. When a mute 0 message is received, signal processing starts again.

We can rewrite the littlebeep~ subpatcher to take advantage of this by turning off signal process-
ing when a note is finished and turning it on again when a new event is received:

While this doesn’t change the function of the patch, it would be more efficient, since the amount of
CPU allocated is always based on the number of notes currently sounding.

Another way to allocate events using poly~ is through the target message. Sending a target message
followed by an integer in the left inlet of a poly~ subpatch tells poly~ to send all subsequent mes-
sages to that instance of the subpatch. You can then use poly~ in conjunction with the poly object
from the last chapter to create a MIDI synthesizer.
145

Tutorial 21 MIDI control: Using the poly~ object
A poly~ subpatch that uses the target message looks like this:

In this example subpatcher, pairs of incoming MIDI pitches and velocities are used to synthesize a
sine tone. When a list is received, the subpatcher sends a bang to thispoly~, causing it to output the
instance or voice number. In the example below, the voice number is sent out an outlet so you can
watch it from the parent patch.
 146

Tutorial 21 MIDI control: Using the poly~ object
In the parent patch the poly object assigns voice numbers to MIDI pitch/velocity pairs output by
makenote. The voice number from the poly object is sent to poly~ with the target message
prepended to it, telling poly~ to send subsequent data to the instance of the targetbeep~ sub-
patcher specified by poly~. When a new note is generated, the target will change. Since poly keeps
track of note-offs, it should recycle voices properly. The second outlet of poly~ reports the voice
that last received a message—it should be the same as the voice number output by poly, since we're
using poly to specify a specific target.

The thispoly~ object can be used to specify parameters to specific instances of a poly~ subpatcher.
By connecting a loadbang object to thispoly~, we can use the voice number to control the center
frequency of a filter:

The littlefilter~ subpatcher, shown here uses the voice number from thispoly~ and multiplies it by
the base frequency received in the second inlet. The incoming signal is filtered by all sixteen
instances simultaneously, with the output amplitude of each instance being controlled by an inte-
ger coming into the first inlet.
147

Tutorial 21 MIDI control: Using the poly~ object
Here’s an example of a patch which uses littlefilter~:

The metro object is hooked up to both a counter and a random. The counter, which feeds the target
message, cycles through the 16 voices of littlefilter~ loaded into the poly~ object, supplying each
with a random number which is used to control the amplitude of that voice.

A signal connected to an inlet of poly~ will be sent to the corresponding in~ objects of all sub-
patcher instances, so the noise~ object in the example above feeds noise to all the subpatchers
inside the poly~. The second inlet (which corresponds to the in 2 box in the subpatcher) controls
the base frequency of the filters. Note that for the frequency to get sent to all poly~ iterations it is
preceded by a target 0 message. You can open a specific instance of a poly~ subpatch by giving the
 148

Tutorial 21 MIDI control: Using the poly~ object
object the open message, followed by the voice you want to look at. The subpatch assigned to voice
number 15 looks like this:

As you can see, the base frequency of this particular iteration of littlefilter~ is 1500. Hz, which is
the multiple of the voice number (15) with the most recently entered base frequency into the sec-
ond inlet (100. Hz).

Summary

poly~ is a powerful way to manage multiple copies of the same subpatch for polyphonic voice allo-
cation. The thispoly~ object works inside a subpatch to control its busy state and turn signal pro-
cessing on and off. The objects in, in~, out, and out~ create special control and signal inputs and
outputs that work with the inlets and outlets of the poly~ object.

See Also

See Also

in Message input for a patcher loaded by poly~
in~ Signal input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~
out~ Signal output for a patcher loaded by poly~
poly~ Polyphony/DSP manager for patchers
thispoly~ Control poly~ voice allocation and muting
149

Tutorial 22
MIDI control: Panning

Panning for localization and distance effects

Loudness is one of the cues we use to tell us how far away a sound source is located. The relative
loudness of a sound in each of our ears is a cue we use to tell us in what direction the sound is
located. (Other cues for distance and location include inter-aural delay, ratio of direct to reflected
sound, etc. For now we"ll only be considering loudness.)

When a sound is coming from a single speaker, we localize the source in the direction of that
speaker. When the sound is equally balanced between two speakers, we localize the sound in a
direction precisely between the speakers. As the balance between the two speakers varies from one
to the other, we localize the sound in various directions between the two speakers.

The term panning refers to adjusting the relative loudness of a single sound coming from two (or
more) speakers. On analog mixing consoles, the panning of an input channel to the two channels
of the output is usually controlled by a single knob. In MIDI, panning is generally controlled by a
single value from 0 to 127. In both cases, a single continuum is used to describe the balance
between the two stereo channels, even though the precise amplitude of each channel at various
intermediate points can be calculated in many different ways.

All other factors being equal, we assume that a softer sound is more distant than a louder sound,
so the overall loudness effect created by the combined channels will give us an important distance
cue. Thus, panning must be concerned not only with the proper balance to suggest direction of
the sound source; it must also control the perceived loudness of the combined speakers to suggest
distance.

This tutorial demonstrates three ways of calculating panning, controllable by MIDI values 0 to
127. You can try out the three methods and decide which is most appropriate for a given situation
in which you might want to control panning.

Patch for testing panning methods

In this tutorial patch, we use a repeated “chirp” (a fast downward glissando spanning more than
three octaves) as a distinctive and predictable sound to pan from side to side.

• To see how the sound is generated, double-click on the p ”sound source” subpatch to open its
Patcher window.
150

Tutorial 22 MIDI control: Panning
Because of the gate~ and begin~ objects, audio processing is off in this subpatch until a 1 is
received in the inlet to open the gate~. At that time, the phasor~ generates a linear frequency glis-
sando going from 2000 to 200 two times per second.

The p “sound source”subpatch

• Close the subpatch window.

The output of this subpatch is sent to two *~ objects—one for each output channel—where its
amplitude at each output channel will be scaled by one of the panning algorithms. You can choose
the panning algorithm you want to try from the pop-up umenu at the top of the patch. This opens
the inlet of the two selector~ objects to receive the control signals from the correct panning sub-
patch. It also opens an outlet of the gate object to allow control values into the desired subpatch.
The panning is controlled by MIDI input from continuous controller No. 10 (designated for pan-
ning in MIDI). In case your MIDI keyboard doesn"t send controller 10 easily, you can also use the
151

Tutorial 22 MIDI control: Panning
pitch bend wheel to test the panning. (For that matter, you don"t need MIDI at all. You can just
drag on the number box marked “MIDI panning”.)

Selection from the umenu opens input and output for one of the three panning subpatches

Linear crossfade

The most direct way to implement panning is to fade one channel linearly from 0 to 1 as the other
channel fades linearly from 1 to 0. This is the easiest type of panning to calculate. We map the
range of MIDI values 0 to 127 onto the amplitude range 0 to 1, and use that value as the amplitude
for the right channel; the left channel is always set to 1 minus the amplitude of the left channel. The
only hitch is that a MIDI pan value of 64 is supposed to mean equal balance between channels, but
it is not precisely in the center of the range (64/127 - 0.5). So we have to treat MIDI values 0 to 64 dif-
ferently from values 65 to 127.

• Double-click on the p “simple linear xfade” object to open its Patcher window.

Linear crossfade using MIDI values 0 to 127 for control
 152

Tutorial 22 MIDI control: Panning
This method seems perfectly logical since the sum of the two amplitudes is always 1. The problem
is that the intensity of the sound is proportional to the sum of the squares of the amplitudes from
each speaker. That is, two speakers playing an amplitude of 0.5 do not provide the same intensity
(thus not the same perceived loudness) as one speaker playing an amplitude of 1. With the linear
crossfade, then, the sound actually seems softer when panned to the middle than it does when
panned to one side or the other.

• Close the subpatch window. Choose “Simple Linear Crossfade” from the umenu. Click on the
ezdac~ to turn audio on, click on the toggle to start the “chirping” sound, and use the “Ampli-
tude” number box to set the desired listening level. Move the pitch bend wheel of your MIDI
keyboard to pan the sound slowly from one channel to the other. Listen to determine if the
loudness of the sound seems to stay constant as you pan.

While this linear crossfade might be adequate in some situations, we may also want to try to find a
way to maintain a constant intensity as we pan.

Equal distance crossfade

If we can maintain a constant intensity as we pan from one side to the other, this will give the
impression that the sound source is maintaining a constant distance from the listener. Geometri-
cally, this could only be true if the sound source were moving in an arc, with the listener at the cen-
ter, so that the distance between the sound source and the listener was always equal to the radius of
the arc.

It happens that we can simulate this condition by mapping one channel onto a quarter cycle of a
cosine wave and the other channel onto a quarter cycle of a sine wave. Therefore, we"ll map the
range of MIDI values 0 to 127 onto the range 0 to 0.25, and use the result as an angle for looking
up the cosine and sine values.

Technical detail: As the sound source travels on a hypothetical arc from 0° to 90° (1/4 cycle
around a circle with the listener at the center), the cosine of its angle goes from 1 to 0 and the
sine of its angle goes from 0 to 1. At all points along the way, the square of the cosine plus the
square of the sine equals 1. This trigonometric identity is analogous to what we are trying to
achieve—the sum of the squares of the amplitudes always equaling the same intensity—so
these values are a good way to obtain the relative amplitudes necessary to simulate a constant
distance between sound source and listener.
153

Tutorial 22 MIDI control: Panning
• Double-click on the p "constant distance xfade" object to open its Patcher window.

MIDI values 0 to 127 are mapped onto 1/4 cycle of cosine and sine functions

Once again we need to treat MIDI values greater than 64 differently from those less than or equal
to 64, in order to retain 64 as the “center” of the range. Once the MIDI value is mapped into the
range 0 to 0.25, the result is used as a phase angle two cycle~ objects, one a cosine and the other
(because of the additional phase offset of 0.75) a sine.

• Close the subpatch window. Choose “Equal Distance Crossfade” from the umenu. Listen to
the sound while panning it slowly from one channel to the other.

Is the difference from the linear crossfade appreciable? Perhaps you don"t care whether the listener
has the impression of movement in an arc when listening to the sound being panned. But the
important point is that the equal distance method is preferable if only because it does not cause a
noticeable dip in intensity when panning from one side to the other.

Speaker-to-speaker crossfade

Given a standard stereo speaker placement—with the two speakers in front of the listener at equal
distances and angles—if an actual sound source (say, a person playing a trumpet) moved in a
straight line from one speaker to the other, the sound source would actually be closer to the listener
when it"s in the middle than it would be when it"s at either speaker. So, to emulate a sound source
 154

Tutorial 22 MIDI control: Panning
moving in a straight line from speaker to speaker, we will need to calculate the amplitudes such
that the intensity is proportional to the distance from the listener.

Distance b is shorter than distance a

• Choose “Speaker-to-Speaker Crossfade” from the umenu. Listen to the sound while panning it
slowly from one channel to the other. You can try different speaker angles by changing the
value in the “Speaker Angle” number box. Choose a speaker angle best suited to your actual
speaker positions.

This effect becomes more pronounced as the speaker angle increases. It is most effective with
“normal” speaker angles ranging from about 30° up to 45°, or even up to 60°. Below 30° the effect
is too slight to be very useful, and above about 60° it"s too extreme to be realistic.

• Double-click on the p "speaker-to-speaker xfade" object to open its Patcher window.

The trigonometric calculations described above are implemented in this subpatch. The straight
ahead distance (b) is set at 1, and the other distances are calculated relative to it. The speaker
angle—specified in degrees by the user in the main patch—is converted to a fraction of a cycle,
and is eventually converted to radians (multiplied by 2π, or 6.2832) for the trigonometric opera-
tions. When the actual gain value is finally calculated, it is multiplied by a normalizing factor of 2/
(d+b) to avoid clipping. When the source reaches an angle greater than 90° from one speaker or
the other, that speaker"s gain is set to 0.

• To help get a better understanding of these calculations, move the pitch bend wheel and watch
the values change in the subpatch. Then close the subpatch and watch the gain values change
in the main Patcher window.

The signal gain values are displayed by an MSP user interface object called number~, which is
explained in the next chapter.

Technical detail: If we know the angle of the speakers (x and -x), we can use the cosine func-
tion to calculate distance a relative to distance b. Similarly we can use the tangent function to
calculate distance c relative to b. The distance between the speakers is thus 2c, and as the MIDI
pan value varies away from its center value of 64 it can be mapped as an offset (o) from the cen-
ter ranging from -c to +c. Knowing b and o, we can use the Pythagorean theorem to obtain the
distance (d) of the source from the listener, and we can use the arctangent function to find its
angle (y). Armed with all of this information, we can finally calculate the gain for the two chan-
nels as a.cos(y±x)/d.

L R

a
b

c

x

o

d

y

155

Tutorial 22 MIDI control: Panning
Summary

MIDI controller No. 10 (or any other MIDI data) can be used to pan a signal between output
channels. The relative amplitude of the two channels gives a localization cue for direction of the
sound source. The overall intensity of the sound (which is proportional to the sum of the squares
of the amplitudes) is a cue for perceived distance of the sound source.

Mapping the MIDI data to perform a linear crossfade of the amplitudes of the two channels is one
method of panning, but it causes a drop in intensity when the sound is panned to the middle.
Using the panning value to determine the angle of the sound source on an arc around the listener
(mapped in a range from 0° to 90°), and setting the channel amplitudes proportional to the cosine
and sine of that angle, keeps the intensity constant as the sound is panned.

When a sound moves past the listener in a straight line, it is loudest when it passes directly in front
of the listener. To emulate straight line movement, one can calculate the relative distance of the
sound source as it travels, and modify the amplitude of each channel (and the overall intensity)
accordingly.

See Also

expr Evaluate a mathematical expression
gate~ Route a signal to one of several outlets
 156

Tutorial 23
Analysis: Viewing signal data

Display the value of a signal: number~

This chapter demonstrates several MSP objects for observing the numerical value of signals, and/
or for translating those values into Max messages.

• Turn audio on and send some sound into the input jacks of the computer.

Every 250 milliseconds the number~ objects at the top of the Patcher display the current value of
the signal coming in each channel, and the meter~ objects show a graphic representation of the
peak amplitude value in the past 250 milliseconds, like an analog LED display.

Current signal value is shown by number~; peak amplitude is shown by meter~

The signal coming into number~ is sent out its right outlet as a float once every time it’s displayed.
This means it is possible to sample the signal value and send it as a message to other Max objects.

The number~ object is actually like two objects in one. In addition to receiving signal values and
sending them out the right outlet as a float, number~ also functions as a floating-point number box
that sends a signal (instead of a float) out its left outlet.

• Move the mod wheel of your MIDI keyboard or drag on the right side of the number~ marked
“Amplitude”. This sets the value of the signal being sent out the number~ object’s left outlet.
157

Tutorial 23 Analysis: Viewing signal data
The signal is connected to the right inlet of two *~ objects, to control the amplitude of the sig-
nal sent to the ezdac~.

float input to number~ sets the value of the signal sent out the left outlet

A number~ object simultaneously converts any signal it receives into floats sent out the right outlet,
and converts any float it receives into a signal sent out the left outlet. Although it can perform both
tasks at the same time, it can only display one value at a time. The value displayed by number~
depends on which display mode it is in. When a small waveform appears in the left part of the num-
ber~, it is in Signal Monitor Mode, and shows the value of the signal coming in the left inlet. When
a small arrow appears in the left part of number~, it is in Signal Output Mode, and shows the value
of the signal going out the left outlet.

The two display modes of number~
 158

Tutorial 23 Analysis: Viewing signal data
You can restrict number~ to one display mode or the other by selecting the object in an unlocked
Patcher and choosing Get Info… from the Object menu.

Allowed display modes can be chosen in the number~ Inspector

At least one display mode must be checked. By default, both display modes are allowed, as shown
in the above example. If both display modes are allowed, you can switch from one display mode to
the other in a locked Patcher by clicking on the left side of the number~. The output of number~
continues regardless of what display mode it’s in.

In the tutorial patch you can see the two display modes of number~. The number~ objects at the
top of the Patcher window are in Signal Monitor Mode because we are using them to show the value
of the incoming signal. The “Amplitude” number~ is in Signal Output Mode because we are using it
to send a signal and we want to see the value of that signal. (New values can be entered into a num-
ber~ by typing or by dragging with the mouse only when it is in Signal Output display mode.)
Since each of these number~ objects is serving only one function, each has been restricted to only
one display mode in the Inspector window.

• Click on the left side of the number~ objects. They don’t change display mode because they
have been restricted to one mode or the other in the Inspector window.
159

Tutorial 23 Analysis: Viewing signal data
Interpolation with number~

The number~ object has an additional useful feature. It can be made to interpolate between input
values to generate a ramp signal much like the line~ object. If number~ receives a non-zero num-
ber in its right inlet, it uses that number as an amount of time, in milliseconds, to interpolate lin-
early to the new value whenever it receives a number in the left inlet. This is equivalent to sending a
list to line~.

number~ can send a linear ramp signal from its old value to a new value

Unlike line~, however, number~ does not need to receive the interpolation time value more than
once; it remembers the interpolation time and uses it for each new number received in the left
inlet. This feature is used for the “Amplitude” number~ so that it won’t cause discontinuous
changes of amplitude in the output signal.

Peak amplitude: meter~

The meter~ object periodically displays the peak amplitude it has received since the last display. At
the same time it also sends the peak signal value out its outlet as a float. The output value is always a
positive number, even if the peak value was negative.

meter~ displays the peak signal amplitude and sends it out as a float

meter~ is useful for observing the peak amplitude of a signal (unlike number~, which displays and
sends out the instantaneous amplitude of the signal). Since meter~ is intended for audio signals, it
expects to receive a signal in the range -1 to 1. If that range is exceeded, meter~ displays a red “clip-
ping” LED as its maximum.
 160

Tutorial 23 Analysis: Viewing signal data
• If you want to see the clipping display, increase the amplitude of the output signal until it
exceeds 1. (Then return it to a desirable level.)

The default interval of time between the display updates of meter~ is 250 milliseconds, but the
display interval can be altered with the interval message. A shorter display interval makes the LED
display more accurate, while a longer interval gives you more time to read its visual and numerical
output.

• You can try out different display intervals by changing the number in the number box marked
“Display Interval” in the lower left corner of the Patcher window.

By the way, the display interval of a number~ object can be set in the same manner (as well as via its
Inspector window).

Use a signal to generate Max messages: snapshot~

The snapshot~ object sends out the current value of a signal, as does the right inlet of number~.
With snapshot~, though, you can turn the output on and off, or request output of a single value by
sending it a bang. When you send a non-zero number in the right inlet, snapshot~ uses that num-
ber as a millisecond time interval, and begins periodically reporting the value of the signal in its
left inlet. Sending in a time interval of 0 stops snapshot~.

This right half of the tutorial patch shows a simple example of how a signal waveform might be
used to generate MIDI data. We’ll sample a sub-audio cosine wave to obtain pitch values for MIDI
note messages.

• Use the number~ to set the output amplitude to 0. In the number box objects at the top of the
patch, set the “Rate” number box to 0.14 and set the “Depth” number box to 0.5. Click on the
message box 200 to start snapshot~ reporting signal values every fifth of a second.

Because snapshot~ is reporting the signal value every fifth of a second, and the period of the cycle~
object is about 7 seconds, the melody will describe one cycle of a sinusoidal wave every 35 notes.
Since the amplitude of the wave is 0.5, the melody will range from 36 to 84 (60±24).

• Experiment with different “Rate” and “Depth” values for the cycle~. Since snapshot~ is sam-
pling at a rate of 5 Hz (once every 200 ms), its Nyquist rate is 2.5 Hz, so that limits the effective
frequency of the cycle~ (any greater frequency will be “folded over”). Click on the 0 message
box to stop snapshot~.

Amplitude modulation

• Set the tremolo depth to 0.5 and the tremolo rate to 4. Increase the output amplitude to a desir-
able listening level.

The cycle~ object is modulating the amplitude of the incoming sound with a 4 Hz tremolo.

• Experiment with faster (audio range) rates of modulation to hear the timbral effect of ampli-
tude modulation. To hear ring modulation, set the modulation depth to 1. To remove the
modulation effect, simply set the depth to 0.
161

Tutorial 23 Analysis: Viewing signal data
View a signal excerpt: capture~

The capture~ object is comparable to the Max object capture. It stores many signal values (the
most recently received 4096 samples, by default), so that you can view an entire excerpt of a signal
as text.

• Set the tremolo depth to 1, and set the tremolo rate to 172. Double-click on the capture~
object to open a text window containing the last 4096 samples.

This object is useful for seeing precisely what has occurred in a signal over time. (4096 samples is
about 93 milliseconds at a sampling rate of 44.1 kHz.) You can type in an argument to specify how
many samples you want to view, and capture~ will store that many samples (assuming there is
enough RAM available in Max. There are various arguments and messages for controlling exactly
what will be stored by capture~. See its description in the MSP Reference Manual for details.

Summary

The capture~ object stores a short excerpt of a signal to be viewed as text. The meter~ object peri-
odically displays the peak level of a signal and sends the peak level out its outlet as a float. The snap-
shot~ object sends out a float to report the current value of a signal. snapshot~ reports the signal
value once when it receives a bang, and it can also report the signal value periodically if it receives a
non-zero interval time in its right inlet.

The number~ object is like a combination of a float number box, sig~, and snapshot~, all at once. A
signal received in its left inlet is sent out the right outlet as a float, as with snapshot~. A float or int
received in its left inlet sets the value of the signal going out its left outlet, as with sig~. Both of
these activities can go on at once in the same number~ object, although number~ can only display
one value at a time. When number~ is in Signal Monitor Mode, it displays the value of the incoming
signal. When number~ is in Signal Output Mode, it displays the value of the outgoing signal.

number~ can also function as a signal ramp generator, like the line~ object. If a non-zero number
has been received in the right inlet (representing interpolation time in milliseconds), whenever
number~ receives a float, its output signal interpolates linearly between the old and new values.

These objects (along with a few others such as sig~, peek~ and avg~) comprise the primary links
between MSP and Max. They convert signals to numerical Max messages, or vice versa.

See Also

capture~ Store a signal to view as text
meter~ Visual peak level indicator
number~ Signal monitor and constant generator
snapshot~ Convert signal values to numbers
 162

Tutorial 24
Analysis: Oscilloscope

Graph of a signal over time

There are times when seeing a picture of a signal is instructive. The scope~ object depicts the signal
it receives, in the manner of an analog oscilloscope, as a graph of amplitude over time.

There are two problems scope~ must consider when plotting a graph of a signal in real time. First
of all, in order for your eye to follow a time-varying signal, an excerpt of the signal must be cap-
tured and displayed for a certain period of time (long enough for you really to see it). Therefore,
the graph must be displayed periodically, and will always lag a bit behind what you hear. Second,
there aren’t enough pixels on the screen for you to see a plot of every single sample (at least, not
without the display being updated at blinding speed), so scope~ has to use a single pixel to sum-
marize many samples.

A patch to view different waveforms

This tutorial shows how to get a useful display of a signal. The patch adds four cosine oscillators to
create a variety of waveforms, and displays them in scope~. The frequency, phase, and amplitude
of each sinusoid is set independently, and the over-all amplitude of the sum of the oscillators is
scaled with an additional *~ object. The settings for each waveform are stored in a preset object.

Additive synthesis can be used to create a variety of complex waveforms

• Click on the first preset in the preset object.

When audio is turned on, the dspstate~ object sends the current sampling rate out its middle out-
let. This is divided by the number of pixels per display buffer (the display buffer is where the dis-
play points are held before they’re shown on the screen), and the result is the number of signal
samples per display point (samples per pixel). This number is sent in the left inlet of scope~ to tell
it how many samples to assign to each display pixel. The default number of pixels per display
buffer is 128, so by this method each display will consist of exactly one second of signal. In other
words, once per second scope~ displays the second that has just passed. We have stretched the
scope~ (using its grow handle) to be 256 pixels wide—twice its default width—in order to provide
a better view.

On the next page we will describe the different waveforms created by the oscillators.
163

Tutorial 24 Analysis: Oscilloscope
• One by one, click on the different presets to see different waveforms displayed in the scope~.
The first eight waves are at the sub-audio frequency of 1 Hz to allow you to see a single cycle of
the waveform, so the signal is not sent to the dac~ until the ninth preset is recalled.

Preset 1. A 1 Hz cosine wave.

Preset 2. A 1 Hz sine wave. (A cosine wave with a phase offset of 3/4 cycle.)

Preset 3. A 1 Hz cosine wave plus a 2 Hz cosine wave (i.e. octaves).

Preset 4. Four octaves: cosine waves of equal amplitude at 1, 2, 4, and 8 Hz.

Preset 5. A band-limited square wave. The four oscillators produce four sine waves with the cor-
rect frequencies and amplitudes to represent the first four partials of a square wave. (Although the
amplitudes of the oscillators are only shown to two decimal places, they are actually stored in the
preset with six decimal place precision.)

Preset 6. A band-limited sawtooth wave. The four oscillators produce four sine waves with the
correct frequencies and amplitudes to represent the first four partials of a sawtooth wave.

Preset 7. A band-limited triangle wave. The four oscillators produce four sine waves with the cor-
rect frequencies and amplitudes to represent the first four partials of a triangle wave (which, it
appears, is actually not very triangular without its upper partials).

Preset 8. This wave has the same frequencies and amplitudes as the band-limited square wave, but
has arbitrarily chosen phase offsets for the four components. This shows what a profound effect
the phase of components can have on the appearance of a waveform, even though its effect on the
sound of a waveform is usually very slight.

Preset 9. A 32 Hz sinusoid plus a 36 Hz sinusoid (one-half cycle out of phase for the sake of the
appearance in the scope~). The result is interference causing beating at the difference frequency of
4 Hz.

Preset 10. Combined sinusoids at 200, 201, and 204 Hz, producing beats at 1, 3, and 4 Hz.

Preset 11. Although the frequencies are all displayed as 200 Hz, they are actually 200, 200.25,
200.667, and 200.8. This produces a complicated interference pattern of six different sub-audio
beat frequencies, a pattern which only repeats precisely every minute. We have set the number of
samples per pixel much lower, so each display represents about 50 ms. This allows you to see about
10 wave cycles per display.

Preset 12. Octaves at 100, 200, and 400 Hz (with different phase offsets), plus one oscillator at 401
Hz creating beats at 1 Hz.

Preset 13. A cluster of equal-tempered semitones. The dissonance of these intervals is perhaps all
the more pronounced when pure tones are used. Each display shows about 100 ms of sound.
 164

Tutorial 24 Analysis: Oscilloscope
Preset 14. A just-tuned dominant seventh chord; these are the 4th, 5th, 6th, and 7th harmonics of
a common fundamental, so their sum has a periodicity of 100 Hz, two octaves below the chord
itself.

Preset 15. Total phase cancellation. A sinusoid is added to a copy of itself 180° out of phase.

Preset 16. All oscillators off.

Summary

The scope~ object gives an oscilloscope view of a signal, graphing amplitude over time. Because
scope~ needs to collect the samples before displaying them, and because the user needs a certain
period of time to view the signal, the display always lags behind the signal by one display period. A
display period (in seconds) is determined by the number of pixels per display buffer, times the
number of samples per pixel, divided by the signal sampling rate. You can control those first two
values by sending integer values in the inlets of scope~. The sampling rate of MSP can be obtained
with the dspstate~ object.

See Also

dspstate~ Report current DSP setting
scope~ Signal oscilloscope
165

Tutorial 25
Analysis: Using the FFT

Fourier’s theorem

The French mathematician Joseph Fourier demonstrated that any periodic wave can be expressed
as the sum of harmonically related sinusoids, each with its own amplitude and phase. Given a dig-
ital representation of a periodic wave, one can employ a formula known as the discrete Fourier
transform (DFT) to calculate the frequency, phase, and amplitude of its sinusoidal components.
Essentially, the DFT transforms a time-domain representation of a sound wave into a frequency-
domain spectrum.

Typically the Fourier transform is used on a small “slice” of time, which ideally is equal to exactly
one cycle of the wave being analyzed. To perform this operation on “real world” sounds—which
are almost invariably not strictly periodic, and which may be of unknown frequency—one can
perform the DFT on consecutive time slices to get a sense of how the spectrum changes over time.

If the number of digital samples in each time slice is a power of 2, one can use a faster version of the
DFT known as the fast Fourier transform (FFT). The formula for the FFT is encapsulated in the
fft~ object. The mathematics of the Fourier transform are well beyond the scope of this manual,
but this tutorial chapter will demonstrate how to use the fft~ object for signal analysis.

Spectrum of a signal: fft~

fft~ receives a signal in its inlet. For each slice of time it receives (512 samples long by default) it
sends out a signal of the same length listing the amount of energy in each frequency region. The
signal that comes out of fft~ is not anything you’re likely to want to listen to. Rather, it’s a list of rel-
ative amplitudes of 512 different frequency bands in the received signal. This “list” happens to be
exactly the same length as the samples received in each time slice, so it comes out at the same rate
as the signal comes in. The signal coming out of fft~ is a frequency-domain analysis of the sam-
ples it received in the previous time slice.
166

Tutorial 25 Analysis: Using the FFT
Although the transform comes out of fft~ in the form of a signal, it is not a time-domain signal.
The only object that “understands” this special signal is the ifft~ object, which performs an inverse
FFT on the spectrum and transforms it back into a time-domain waveform.

The signal coming out of fft~ is spectral information, not a time-domain signal

With the capture~ object you can grab some of the output of fft~ and examine the frequency anal-
ysis of a signal.

• Click on one of the ezdac~ objects to turn audio on.

When audio is turned on, dspstate~ sends the MSP sampling rate out its middle outlet. We use
this number to calculate a frequency that has a period of exactly 512 samples. This is the funda-
mental frequency of the FFT itself. If we send a wave of that frequency into fft~, each time slice
would contain exactly one cycle of the waveform. We will actually use a cosine wave at ten times
that frequency as the test tone for our analysis, as shown below.

The test tone is at 10 times the base frequency of the FFT time slice

The upper left corner of the Patcher window shows a very simple use of fft~. The analysis is stored
in a capture~ object, and an ifft~ object transforms the analysis back into an audio signal. (Ordi-
narily you would not transform and inverse-transform an audio signal for no reason like this. The
ifft~ is used in this patch simply to demonstrate that the analysis-resynthesis process works.)
167

Tutorial 25 Analysis: Using the FFT
• Click on the toggle in the upper left part of the patch to hear the resynthesized sound. Click on
the toggle again to close the gate~. Now double-click on the capture~ object in that part of the
patch to see the analysis performed by fft~.

In the capture~ text window, the first 512 numbers are all 0.0000. That is the output of fft~ during
the first time slice of its analysis. Remember, the analysis it sends out is always of the previous time
slice. When audio was first turned on, there was no previous audio, so the fft~ object’s analysis
shows no signal.

• Scroll past the first 512 numbers. (The numbers in the capture~ object’s text window are
grouped in blocks, so if your signal vector size is 256 you will have two groups of numbers that
are all 0.0000.) Look at the second time slice of 512 numbers.

Each of the 512 numbers represents a harmonic of the FFT frequency itself, starting at the 0th har-
monic (0 Hz). The analysis shows energy in the eleventh number, which represents the 10th har-
monic of the FFT, 10/512 the sampling rate—precisely our test frequency. (The analysis also shows
energy at the 10th number from the end, which represents 502/512 the sampling rate. This frequency
exceeds the Nyquist rate and is actually equivalent to -10/512 of the sampling rate.)

It appears that fft~ has correctly analyzed the signal. There’s just one problem...

Practical problems of the FFT

The FFT assumes that the samples being analyzed comprise one cycle of a periodic wave. In our
example, the cosine wave was the 10th harmonic of the FFT’s fundamental frequency, so it worked
fine. In most cases, though, the 512 samples of the FFT will not be precisely one cycle of the wave.
When that happens, the FFT still analyzes the 512 samples as if they were one cycle of a waveform,
and reports the spectrum of that wave. Such an analysis will contain many spurious frequencies
not actually present in the signal.

• Close the text window of capture~. With the audio still on, set the “Test Frequency” number
box to 1000. This also triggers the clear message in the upper left corner of the patch to empty
the capture~ object of its prior contents. Double-click once again on capture~, and scroll
ahead in the text window to see its new contents.

Technical detail: An FFT divides the entire available frequency range into as many bands
(regions) as there are samples in each time slice. Therefore, each set of 512 numbers coming out
of fft~ represents 512 divisions of the frequency range from 0 to the sampling rate. The first
number represents the energy at 0 Hz, the second number represents the energy at 1/512 the sam-
pling rate, the third number represents the energy at 2/512 the sampling rate, and so on.

Note that once we reach the Nyquist rate on the 257th number (256/512 of the sampling rate), all
numbers after that are folded back down from the Nyquist rate. Another way to think of this is
that these numbers represent negative frequencies that are now ascending from the (negative)
Nyquist rate. Thus, the 258th number is the energy at the Nyquist rate minus 1/512 of the sam-
pling rate (which could also be thought of as -255/512 the sampling rate). In our example, we see
energy in the 11th frequency region (10/512 the sampling rate) and the 503rd frequency region
(-256/512 - -246/512 = -10/512 the sampling rate).
 168

Tutorial 25 Analysis: Using the FFT
The analysis of the 1000 Hz tone does indeed show greater energy at 1000 Hz—in the 12th and
13th frequency regions if your MSP sampling rate is 44,100 Hz—but it also shows energy in virtu-
ally every other region. That’s because the waveform it analyzed is no longer a sinusoid. (An exact
number of cycles does not fit precisely into the 512 samples.) All the other energy shown in this
FFT is an artifact of the “incorrect” interpretation of those 512 samples as one period of the correct
waveform.

To resolve this problem, we can try to “taper” the ends of each time slice by applying an amplitude
envelope to it, and use overlapping time slices to compensate for the use of the envelope.

Overlapping FFTs

The lower right portion of the tutorial patch takes this approach of using overlapping time slices,
and applies a triangular amplitude envelope to each slice before analyzing it. (Other shapes of
amplitude envelope are often used for this process. The triangular window is simple and quite
effective.) In this way, the fft~ object is viewing each time slice through a triangular window which
tapers its ends down, thus filtering out many of the false frequencies that would be introduced by
discontinuities.

Overlapping triangular windows (envelopes) applied to a 100 Hz cosine wave

To accomplish this windowing and overlapping of time slices, we must perform two FFTs, one of
which is offset 256 samples later than the other. (Note that this part of the patch will only work if
your current MSP Signal Vector size is 256 or less, since fft~ can only be offset by a multiple of the
169

Tutorial 25 Analysis: Using the FFT
vector size.) The offset of an FFT can be given as a (third) typed-in argument to fft~, as is done for
the fft~ object on the right. This results in overlapping time slices.

One FFT is taken 256 samples later than the other

The windowing is achieved by multiplying the signal by a triangular waveform (stored in the
buffer~ object) which recurs at the same frequency as the FFT—once every 512 samples. The
window is offset by 1/2 cycle (256 samples) for the second fft~.

• Double-click on the buffer~ object to view its contents. Then close the buffer~ window and
double-click on the capture~ object that contains the FFT of the windowed signal. Scroll past
the first block or two of numbers until you see the FFT analysis of the windowed 1000 Hz
tone.

As with the unwindowed FFT, the energy is greatest around 1000 Hz, but here the (spurious)
energy in all the other frequency regions is greatly reduced by comparison with the unwindowed
version.

Signal processing using the FFT

In this patch we have used the fft~ object to view and analyze a signal, and to demonstrate the
effectiveness of windowing the signal and using overlapping FFTs. However, one could also write a
patch that alters the values in the signal coming out of fft~, then sends the altered analysis to ifft~
for resynthesis. An implementation of this frequency-domain filtering scheme will be seen in a
future tutorial.

Summary

The fast Fourier transform (FFT) is an algorithm for transforming a time-domain digital signal
into a frequency-domain representation of the relative amplitude of different frequency regions in
the signal. An FFT is computed using a relatively small excerpt of a signal, usually a slice of time
512 or 1024 samples long. To analyze a longer signal, one performs multiple FFTs using consecu-
tive (or overlapping) time slices.

The fft~ object performs an FFT on the signal it receives, and sends out (also in the form of a sig-
nal) a frequency-domain analysis of the received signal. The only object that understands the out-
put of fft~ is ifft~ which performs an inverse FFT to synthesize a time-domain signal based on the
 170

Tutorial 25 Analysis: Using the FFT
frequency-domain information. One could alter the signal as it goes from fft~ to ifft~, in order to
change the spectrum.

The FFT only works perfectly when analyzing exactly one cycle (or exactly an integer number of
cycles) of a tone. To reduce the artifacts produced when this is not the case, one can window the
signal being analyzed by applying an amplitude envelope to taper the ends of each time slice. The
amplitude envelope can be applied by multiplying the signal by using a cycle~ object to read a win-
dowing function from a buffer~ repeatedly at the same rate as the FFT itself (i.e., once per time
slice).

See Also

buffer~ Store audio samples
capture~ Store a signal to view as text
fft~ Fast Fourier transform
ifft~ Inverse Fast Fourier transform
171

Tutorial 26
Frequency Domain Signal Processing with pfft~

Working in the Frequency Domain

Most digital signal processing of audio occurs in what is known as the time domain. As the other
MSP tutorials show you, many of the most common processes for manipulating audio consist of
varying samples (or groups of samples) in amplitude (ring modulation, waveshaping, distortion)
or time (filters and delays). The Fast Fourier Transform (FFT) allows you to translate audio data
from the time domain into the frequency domain, where you can directly manipulate the spec-
trum of a sound (the component frequencies of a slice of audio).

As we have seen in Tutorial 25, the MSP objects fft~ and ifft~ allow you to transform signals into
and out of the frequency domain. The fft~ object takes a a group of samples (commonly called a
frame) and transforms them into pairs of real and imaginary numbers representing the amplitude
and phase of as many frequencies as there are samples in the frame. These are usually referred to as
bins or frequency bins. (We will see later that the real and imaginary numbers are not themselves
the amplitude and phase, but that the amplitude and phase can be derived from them.) The ifft~
object performs the inverse operation, taking frames of frequency-domain samples and convert-
ing them back into a time domain audio signal that you can listen to or process further. The num-
ber of samples in the frame is called the FFT size (or sometimes FFT point size). It must be a power
of 2 such as 512, 1024 or 2048 (to give a few commonly used values).

One of the shortcomings of the fft~ and ifft~ objects is that they work on successive frames of
samples without doing any overlapping or cross-fading between them. For most practical musical
uses of these objects, we usually need to construct such an overlap and crossfade system around
them. There are several reasons for needing to create such a system when using the Fourier trans-
form to process sound. In FFT analysis there is always a trade-off between frequency resolution
and timing resolution. For example, if your FFT size is 2048 samples long, the FFT analysis gives
you 2048 equally-spaced frequency bins from 0 Hz. up to the sampling frequency (only 1024 of
these bins are of any use; see Tutorial 25 for details). However, any timing resolution that occurs
within those 2048 samples will be lost in the analysis, since all temporal changes are lumped
together in a single FFT frame. In addition, if you modify the spectral data after the FFT analysis
and before the IFFT resynthesis you can no longer guarantee that the time domain signal output
by the IFFT will match up in successive frames. If the output time domain vectors don’t fit
together you will get clicks in your output signal. By designing a windowing function in MSP (see
below), you can compensate for these artifacts by having successive frames cross-fade into each
other as they overlap. While this will not compensate for the loss of time resolution, the overlap-
ping of analysis data will help to eliminate the clicks and pops that occurs at the edges of an IFFT
frame after resynthesis.

This analysis/resynthesis scheme (using overlapping, windowed slices of time with the FFT and
IFFT) is usually referred to as a Short Term (or Short Time) Fourier Transform (STFT). An STFT
can be designed in MSP by creating a patch that uses one or more pairs of fft~/ifft~ objects with
the input signal “windowed” into and out of the frequency domain. While this approach works
fairly well, it is somewhat cumbersome to program since every operation performed in the fre-
172

Tutorial 26 Frequency Domain
Signal Processing with pfft~
quency domain needs to be duplicated correctly for each fft~/ifft~ pair. The following subpatch
illustrates how one would window incoming FFT data in this manner:

How to properly window audio for use with the fft~ object

In addition to the fact that this approach can often be a challenge to program, there is also the dif-
ficulty of generalizing the patch for multiple combinations of FFT size and overlap. Since the argu-
ments to fft~/ifft~ for FFT frame size and overlap can’t be changed, multiple hand-tweaked
versions of each subpatch must be created for different situations. For example, a percussive sound
173

Tutorial 26 Frequency Domain
Signal Processing with pfft~
would necessitate an analysis with at least four overlaps, while a reasonably static, harmonically
rich sound would call for a very large FFT size.

The pfft~ object addresses many of the shortcomings of the “old” fft~ and ifft~ objects, allowing
you to create and load special “spectral subpatches” that manipulate frequency-domain signal
data independently of windowing, overlap and FFT size. A single sub-patch can therefore be suit-
able for multiple applications. Furthermore, the pfft~ object manages the overlapping of FFT
frames, handles the windowing functions for you, and eliminates the redundant mirrored data in
the spectrum, making it both more convenient to use and more efficient than the traditional fft~
and ifft~ objects.

The pfft~ object takes as its argument the name of a specially designed subpatch containing the
fftin~ and fftout~ objects (which will be discussed below), a number for the FFT size in samples,
and a number for the overlap factor (these must both be integers which are a power of 2):

A simple use of pfft~.

Technical detail: Time vs. Frequency Resolution

The FFT size we use provides us with a tradeoff; because the Fourier transform mathematically
converts a small slice of time into a frozen “snapshot” representing its spectrum, you might first
think that it would be beneficial to use small FFT sizes in order to avoid grouping temporal
changes together in one analysis spectrum. While this is true, an FFT size with a smaller num-
ber of points also means that our spectrum will have a smaller number of frequency bins, which
means that the frequency resolution will be lower. Smaller FFT sizes result in better temporal
resolution, but at the cost of lower frequency resolution when the sound is modified in the fre-
quency domain and resynthesized. Conversely, larger FFT sizes give us finer frequency detail,
but tend to “smear” temporal changes in the sound. In practice, we therefore need to choose an
appropriate FFT size based on the kind of sound we want to process.
 174

Tutorial 26 Frequency Domain
Signal Processing with pfft~
The pfft~ subpatch fftbasic~ referenced above might look something like this:

The fftbasic~ subpatch used in the previous example

The fftbasic~ subpatch shown above takes a signal input, performs an FFT on that signal with a
Hanning window (see below), and performs an IFFT on the FFT’d signal, also with a Hanning
window. The pfft~ object communicates with its sub-patch using special objects for inlets and
outlets. The fftin~ object receives a time-domain signal from its parent patch and transforms it via
an FFT into the frequency domain. This time-domain signal has already been converted, by the
pfft~ object into a sequence of frames which overlap in time, and the signal that fftin~ outputs
into the spectral subpatch represents the spectrum of each of these incoming frames.

The fftout~ object does the reverse, accepting frequency domain signals, converting them back
into a time domain signal, and passing it via an outlet to the parent patch. Both objects take a
numbered argument (to specify the inlet or outlet number), and a symbol specifying the window
function to use. The available window functions are Hanning (the default if none is specified),
Hamming, Blackman, Triangle, and Square. The nofft argument to fftin~ and fftout~ creates a
generic signal inlet or outlet for control data where no FFT/IFFT or windowing is performed. In
addition, the symbol can be the name of a buffer~ object which holds a custom windowing func-
tion. Different window functions have different bandwidths and stopband depths for each chan-
nel (or bin, as it is sometimes called) of the FFT. A good reference on FFT analysis will help you

Technical detail: The signal vector size inside the spectral subpatch is equal to half the FFT size
specified as an argument to the pfft~. Here’s the reason why: for efficiency’s sake, fftin~ and
fftout~ perform what is known as a real FFT, which is faster than the traditional complex FFT
used by fft~ and ifft~. This is possible because the time-domain signals we transform have no
imaginary part (or at least they have an imaginary part which is equal to zero). A real FFT is a
clever mathematical trick which re-arranges the real-only time-domain input to the FFT as real
and imaginary parts of a complex FFT that is half the size of our real FFT. The result of this FFT
is then re-arranged into a complex spectrum representing half (from 0Hz to half the sampling
rate) of our original real-only signal. The smaller FFT size means it is more efficient for our
computer’s processor, and, because a complex FFT produces a mirrored spectrum of which
only half is really useful to us, the real FFT contains all the data we need to define and subse-
quently manipulate the signal’s spectrum.
175

Tutorial 26 Frequency Domain
Signal Processing with pfft~
select a window based on the sound you are trying to analyze and what you want to do with it. We
recommend The Computer Music Tutorial by Curtis Roads or Computer Music by Charles Dodge
and Thomas Jerse.

For testing and debugging purposes, there is a handy nofft argument to fftin~ and fftout~ which
allows the overlapping time-domain frames to and from the pfft~ to be passed directly to and
from the subpatch without applying a window function nor performing a Fourier transform. In
this case (because the signal vector size of the spectral subpatch is half the FFT size), the time-
domain signal is split between the real and imaginary outlets of the fftin~ and fftout~ objects,
which may be rather inconvenient when using an overlap of 4 or more. Although the nofft option
can be used to send signal data from the parent patch into the spectral subpatch and may be useful
for debugging subpatches, it is not recommended for most practical uses of pfft~.

A more complicated pfft~ subpatch might look something like this:

A simple type of spectral convolution

This subpatch takes two signal inputs (which would appear as inlets in the parent pfft~ object),
converts them into the frequency domain, multiplies the real signals with one another and multi-
plies the imaginary signals with one another and outputs the result to an fftout~ object that con-
verts the frequency domain data into a time domain signal. Multiplication in the frequency
domain is called convolution, and is the basic signal processing procedure used in cross synthesis
(morphing one sound into another). The result of this algorithm is that frequencies from the two
analyses with larger values will reinforce one another, whereas weaker frequency values from one
analysis will diminish or cancel the value from the other, whether strong or weak. Frequency con-
tent that the two incoming signals share will be retained, therefore, and disparate frequency con-
tent (i.e. a pitch that exists in one signal and not the other) will be attenuated or eliminated. This
example is not a “true” convolution, however, as the multiplication of complex numbers (see below)
is not as straightforward as the multiplication performed in this example. We’ll learn a couple ways
of making a “correct” convolution patch later in this tutorial.

You have probably already noticed that there are always two signals to connect when connecting
fftin~ and fftout~, as well as when processing the spectra in-between them. This is because the
FFT algorithm produces complex numbers — numbers that contain a real and an imaginary part.
 176

Tutorial 26 Frequency Domain
Signal Processing with pfft~
The real part is sent out the leftmost outlet of fftin~, and the imaginary part is sent out its second
outlet. The two inlets of fftout~ also correspond to real and imaginary, respectively. The easiest
way to understand complex numbers is to think of them as representing a point on a 2-dimen-
sional plane, where the real part represents the X-axis (horizontal distance from zero), and the
imaginary part represents the Y-axis (vertical distance from zero). We’ll learn more about what we
can do with the real and imaginary parts of the complex numbers later on in this tutorial.

The fftin~ object has a third outlet that puts out a stream of samples corresponding to the current
frequency bin index whose data is being sent out the first two outlets (this is analogous to the third
outlet of the fft~ and ifft~ objects discussed in Tutorial 25). For fftin~, this outlet outputs a num-
ber from 0 to half the FFT size minus 1. You can convert these values into frequency values (repre-
senting the “center” frequency of each bin) by multiplying the signal (called the sync signal) by the
base frequency, or fundamental, of the FFT. The fundamental of the FFT is the lowest frequency
that the FFT can analyze, and is inversely proportional to the size of the FFT (i.e. larger FFT sizes
yield lower base frequencies). The exact fundamental of the FFT can be obtained by dividing the
FFT frame size into the sampling rate. The fftinfo~ object, when placed into a pfft~ subpatch, will
give you the FFT frame size, the FFT half-frame size (i.e. the number of bins actually used inside
the pfft~ subpatch), and the FFT hop size (the number of samples of overlap between the win-
dowed frames). You can use this in conjunction with the dspstate~ object or the adstatus object
with the sr (sampling rate) argument to obtain the base frequency of the FFT:

Finding the center frequency of the current analysis bin.

Note that in the above example the number~ object is used for the purposes of demonstration only
in this tutorial. When DSP is turned on, the number displayed in the signal number box will not
appear to change because the signal number box by default displays the first sample in the signal
vector, which in this case will always be 0. To see the center frequency values, you will need to use
the capture~ object or record this signal into a buffer~.
177

Tutorial 26 Frequency Domain
Signal Processing with pfft~
Once you know the frequency of the bins being streamed out of fftin~, you can perform opera-
tions on the FFT data based on frequency. For example:

A simple spectral crossover.

The above pfft~ subpatch, called xover~, takes an input signal and sends the analysis data to one of
two fftout~ objects based on a crossover frequency. The crossover frequency is sent to the pfft~
subpatch by using the in object, which passes max messages through from the parent patch via the
pfft~ object’s right inlet. The center frequency of the current bin — determined by the sync outlet
in conjunction with fftinfo~ and dspstate~ as we mentioned above — is compared with the cross-
over frequency. The result of this comparison flips a gate that sends the FFT data to one of the two
fftout~ objects: the part of the spectrum that is lower in pitch than the crossover frequency is sent
 178

Tutorial 26 Frequency Domain
Signal Processing with pfft~
out the left outlet of the pfft~ and the part that is higher than the crossover frequency is sent out
the right. Here is how this subpatcher might be used with pfft~ in a patch:

One way of using the xover~ subpatch

Note that we can send integers, floats, and any other Max message to and from a subpatch loaded
by pfft~ by using the in and out objects. (See Tutorial 21, Using the poly~ object for details. Keep in
mind, however, that the signal objects in~ and out~ currently do not function inside a pfft~.)

As we have already learned, the first two outlets of fftin~ put out a stream of real and imaginary
numbers for the bin response for each sample of the FFT analysis (similarly, fftout~ expects these
numbers). These are not the amplitude and phase of each bin, but should be thought of instead as
pairs of Cartesian coordinates, where x is the real part and y is the imaginary, representing points
on a 2-dimensional plane. The amplitude and phase of each frequency bin are the polar coordi-
179

Tutorial 26 Frequency Domain
Signal Processing with pfft~
nates of these points, where the distance from the origin is the bin amplitude and the angle around
the origin is the bin phase:

Unit-circle diagram showing the relationship of FFT real and imaginary values to amplitude and phase

You can easily convert between real/imaginary pairs and amplitude/phase pairs using the objects
cartopol~ and poltocar~:

Cartesian to polar conversion
 180

Tutorial 26 Frequency Domain
Signal Processing with pfft~
You can use this information to create signal processing routines based on amplitude/phase data.
A spectral noise gate would look something like this:

A spectral noise gate

By comparing the amplitude output of cartopol~ with the threshold signal sent into inlet 2 of the
pfft~, each bin is either passed or zeroed by the *~ objects. This way only frequency bins that
exceed a certain amplitude are retained in the resynthesis (For information on amplitude values
inside a spectral subpatch, see the Technical note above.).

Convolution and cross-synthesis effects commonly use amplitude and phase data for their pro-
cessing. One of the most basic cross-synthesis effects we could make would use the amplitude

Technical detail: The amplitude values output by the left outlet of cartopol~ depend on the
amplitude of the signal you send to the pfft~ object. Due to the way fftin~ and fftout~ automat-
ically scale their window functions (in order to maintain the same output amplitude after over-
lap-adding), the maximum amplitude value for a constant signal of 1.0 will be

(FFT size / (sqrt(sum of points in the window/hop size))

So, when using a 512-point FFT with a square window with an overlap of 2, the maximum pos-
sible amplitude value will be roughly 362, with 4-overlap it will be 256. When using a hanning
or hamming window and 2 overlap, it will be approximately 325 or 341, and with 4-overlap, it
will be 230 or 241, respectively. Generally, however, the peak amplitudes in a spectral frame
will most likely be only one-fourth to half this high for non-periodic or semi-periodic “real-
world” sounds normalized between -1.0 and 1.0.

The phase values output by the right outlet of cartopol~ will always be between -π and π.
181

Tutorial 26 Frequency Domain
Signal Processing with pfft~
spectrum of one sound with the phase spectrum of another. Since the phase spectrum is related to
information about the sound’s frequency content, this kind of cross synthesis can give us the har-
monic content of one sound being “played” by the spectral envelope of another sound. Naturally,
the success of this type of effect depends heavily on the choice of the two sounds used. Here is an
example of a spectral subpatch which makes use of cartopol~ and poltocar~ to perform this type of
cross-synthesis:

Simple cross-synthesis

The following subpatch example shows two ways of convolving the amplitude of one input with
the amplitude of another:

Amplitude-only convolution

You can readily see on the left-hand side of this subpatch that the amplitude values of the input sig-
nals are multiplied together. This reinforces amplitudes which are prominent in both sounds while
 182

Tutorial 26 Frequency Domain
Signal Processing with pfft~
attenuating those which are not. The phase response of the first signal is unaffected by complex-
real multiplication; the phase response of the second signal input is ignored. You will also notice
that the right-hand side of the subpatch is mathematically equivalent to the left, even though it
uses only one cartopol~ object.

Toward the beginning of this tutorial, we saw an example of the multiplication of two real/imagi-
nary signals to perform a convolution. That example was kept simple for the purposes of explana-
tion but was, in fact, incorrect. If you wondered what a “correct” multiplication of two complex
numbers would entail, here are two ways to do it:

The correct method for doing complex convolution
183

Tutorial 26 Frequency Domain
Signal Processing with pfft~
A correct and clever way of doing complex convolution

Subpatchers created for use with pfft~ can use the full range of MSP objects, including objects that
access data stored in a buffer~ object. (Although some objects which were designed to deal with
timing issues may not always behave as initially expected when used inside a pfft~.) The following
 184

Tutorial 26 Frequency Domain
Signal Processing with pfft~
example records spectral analysis data into two channels of a stereo buffer~ and then allows you to
resynthesize the recording at a different speed.

Recording and playback in a pfft~ subpatch

The example subpatcher records spectral data into a buffer~, and the second reads data from that
buffer~. In the recording portion of the subpatch you will notice that we don’t just record the
185

Tutorial 26 Frequency Domain
Signal Processing with pfft~
amplitude and phase as output from cartopol~, but instead use the framedelta~ object to compute
the phase difference (sometimes referred to as the phase deviation, or phase derivative). The
phase difference is quite simply the difference in phase between equivalent bin locations in succes-
sive FFT frames. The output of framedelta~ is then fed into a phasewrap~ object to ensure that the
data is properly constrained between -π and π. Messages can be sent to the record~ object from
the parent patch via the send object in order to start and stop recording and turn on looping.

In the playback part of the subpatch we use a non-signal inlet to specify the frame number for the
resynthesis. This number is multiplied by the spectral frame size and added to the output of a
count~ object which counts from 0 to the spectral frame size minus 1 in order to be able to recall
each frequency bin in the given frame successively using index~ to read both channels of our
buffer~. (We could also have used the sync outlet of the fftin~ object in place of count~, but are
using the current method for the sake of visually separating the recording and playback parts of
our subpatch, as well as to give an example of how to make use of count~ in the context of a spec-
tral subpatch.) You’ll notice that we reconstruct the phase using the frameaccum~ object, which
accumulates a “running phase” value by performing the inverse of framedelta~. We need to do this
because we might not be reading the analysis frames successively at the original rate in which they
were recorded. The signals are then converted back into real and imaginary values for fftout~ by
the poltocar~ object.

This is a simple example of what is known as a phase vocoder. Phase vocoders allow you to time-
stretch and compress signals independently of their pitch by manipulating FFT data rather than
time-domain segments. If you think of each frame of an FFT analysis as a single frame in a film,
you can easily see how moving through the individual frames at different rates can change the
apparent speed at which things happen. This is more or less what a phase vocoder does.

Note that because pfft~ does window overlapping, the amount of data that can be stored in the
buffer~ is dependent on the settings of the pfft~ object. This can make setting the buffer size cor-
rectly a rather tricky matter, especially since the spectral frame size (i.e. the signal vector size)
inside a pfft~ is half the FFT size indicated as its second argument, and because the spectral sub-
patch is processing samples at a different rate to its parent patch! If we create a stereo buffer~ with
1000 milliseconds of sample memory, we will have 44100 samples available for our analysis data.
If our FFT size is 1024 then each spectral frame will take up 512 samples of our buffer’s memory,
which amounts to 86 frames of analysis data(44100 / 512 = 86.13). Those 86 frames do not repre-
sent one second of sound, however! If we are using 4-times overlap, we are processing one spectral
frame every 256 samples, so 86 frames means roughly 22050 samples, or a half second’s worth of
time with respect to the parent patch. As you can see this all can get rather complicated...
 186

Tutorial 26 Frequency Domain
Signal Processing with pfft~
Let’s take a look at the parent patch for the above phase vocoder subpatch (called mypvoc~):

Wrapper for mypvoc

Notice that we’re using a phasor~ object with a snapshot~ object in order to generate a ramp speci-
fying the read location inside our subpatch. We could also use a line object, or even a slider, if we
wanted to “scrub” our analysis frames by hand. Our main patch allows us to change the playback
rate for a loop of our analysis data. We can also specify the loop size and an offset into our collec-
tion of analysis frames in order to loop a given section of analysis data at a given playback rate.
You’ll notice that changing the playback rate does not affect the pitch of the sound, only the speed.
You may also notice that at very slow playback rates, certain parts of your sound (usually note
attacks, consonants in speech or other percussive sounds) become rather “smeared” and gain an
artificial sound quality.
187

Tutorial 26 Frequency Domain
Signal Processing with pfft~
Summary

Using pfft~ to perform spectral-domain signal processing is generally easier and visually clearer
than using the traditional fft~ and ifft~ objects, and lets you design patches that can be used at
varying FFT sizes and overlaps. There are myriad applications of pfft~ for musical signal process-
ing, including filtering, cross synthesis and time stretching.

See Also

adstatus Access audio driver output channels
cartopol~ Signal Cartesian to Polar coordinate conversion
dspstate~ Report current DSP setting
fftin~ Input for a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
framedelta~ Compute phase deviation between successive FFT frames
pfft~ Spectral processing manager for patchers
phasewrap~ Wrap a signal between -π and π
poltocar~ Signal Polar to Cartesian coordinate conversion
 188

Tutorial 27
Processing: Delay lines

Effects achieved with delayed signals

One of the most basic yet versatile techniques of audio processing is to delay a signal and mix the
delayed version with the original signal. The delay time can range from a few milliseconds to sev-
eral seconds, limited only by the amount of RAM you have available to store the delayed signal.

When the delay time is just a few milliseconds, the original and delayed signals interfere and create
a subtle filtering effect but not a discrete echo. When the delay time is about 100 ms we hear a
“slapback” echo effect in which the delayed copy follows closely behind the original. With longer
delay times, we hear the two signals as discrete events, as if the delayed version were reflecting off a
distant mountain.

This tutorial patch delays each channel of a stereo signal independently, and allows you to adjust
the delay times and the balance between direct signal and delayed signal.

Creating a delay line: tapin~ and tapout~

The MSP object tapin~ is a buffer that is continuously updated so that it always stores the most
recently received signal. The amount of signal it stores is determined by a typed-in argument. For
example, a tapin~ object with a typed-in argument of 1000 stores the most recent one second of
signal received in its inlet.

A 1-second delay buffer tapped 500 and 1000 ms in the past

The only object to which the outlet of tapin~ should be connected is a tapout~ object. This con-
nection links the tapout~ object to the buffer stored by tapin~. The tapout~ object “taps into” the
delayed signal at certain points in the past. In the above example, tapout~ gets the signal from
tapin~ that occurred 500 ms ago and sends it out the left outlet; it also gets the signal delayed by
1000 ms and sends that out its right outlet. It should be obvious that tapout~ can’t get signal
delayed beyond the length of time stored in tapin~.
189

Tutorial 27 Processing: Delay lines
A patch for mixing original and delayed signals

The tutorial patch sends the sound coming into the computer to two places: directly to the output
of the computer and to a tapin~-tapout~ delay pair. You can control how much signal you hear
from each place for each of the stereo channels, mixing original and delayed signal in whatever
proportion you want.

• Turn audio on and send some sound in the input jacks of your computer. Set the number box
marked “Output Level” to a comfortable listening level. Set the “Left Delay Time” number box
to 500 and the “Right Delay Time” to 1000.

At this point you don’t hear any delayed signal because the “Direct Level” for each channel is set at
1 and the “Delay Level” for each channel is set at 0. The signal is being delayed, but you simply don’t
hear it because its amplitude is scaled to 0.

Direct signal is on full; delayed signal is turned down to 0

The hslider in the left part of the Patcher window serves as a balance fader between a “Dry” (all
direct) output signal and a “Wet” (fully processed) output signal.
 190

Tutorial 27 Processing: Delay lines
• Drag the hslider to the halfway point so that both the direct and delayed signal amplitudes are
at 0.5. You hear the original signal in both channels, mixed with a half-second delay in the left
channel and a one-second delay in the right channel.

Equal balance between direct signal and delayed signal

• You can try a variety of different delay time combinations and wet-dry levels. Try very short
delay times for subtle comb filtering effects. Try creating rhythms with the two delay times
(with, for example, delay times of 375 and 500 ms).

Changing the parameters while the sound is playing can result in clicks in the sound because this
patch does not protect against discontinuities. You could create a version of this patch that avoids
this problem by interpolating between parameter values with line~ or number~ objects.

In future tutorial chapters, you will see how to create delay feedback, how to use continuously
variable delay times for flanging and pitch effects, and other ways of altering sound using delays,
filters, and other processing techniques.

Summary

The tapin~ object is a continuously updated buffer which always stores the most recently received
signal. Any connected tapout~ object can use the signal stored in tapin~, and access the signal
from any time in the past (up to the limits of the tapin~ object’s storage). A signal delayed with
tapin~ and tapout~ can be mixed with the undelayed signal to create discrete echoes, early reflec-
tions, or comb filtering effects.

See Also

tapin~ Input to a delay line
tapout~ Output from a delay line
191

Tutorial 28
Processing: Delay lines with feedback

Delay emulates reflection

You can delay a signal for a specific amount of time using the tapin~ and tapout~ objects. The
tapin~ object is a continually updated buffer that stores the most recent signal it has received, and
tapout~ accesses that buffer at one or more specific points in the past.

Delaying a signal with tapin~ and tapout~

Combining a sound with a delayed version of itself is a simple way of emulating a sound wave
reflecting off of a wall before reaching our ears; we hear the direct sound followed closely by the
reflected sound. In the real world some of the sound energy is actually absorbed by the reflecting
wall, and we can emulate that fact by reducing the amplitude of the delayed sound, as shown in the
following example.

Scaling the amplitude of a delayed signal, to emulate absorption

Technical detail: Different materials absorb sound to varying degrees, and most materials
absorb sound in a way that is frequency-dependent. In general, high frequencies get absorbed
more than low frequencies. That fact is being ignored here.
192

Tutorial 28 Processing: Delay lines with feedback
Delaying the delayed signal

Also, in the real world there’s usually more than one surface that reflects sound. In a room, for
example, sound reflects off of the walls, ceiling, floor, and objects in the room in myriad ways, and
the reflections are in turn reflected off of other surfaces. One simple way to model this “reflection
of reflections” is to feed the delayed signal back into the delay line (after first “absorbing” some of
it).

Delay with feedback

A single feedback delay line like the one above is too simplistic to sound much like any real world
acoustical situation, but it can generate a number of interesting effects. Stereo delay with feedback
is implemented in the example patch for this tutorial. Each channel of audio input is delayed,
scaled, and fed back into the delay line.

Stereo delay with individual delay times and feedback amounts

• Set the number box marked “Output Level” to 1., and move the hslider to its middle position so
that the “Direct Level” and “Delay Level” number box objects read 0.5. Turn audio on, and send
some sound into the audio input of the computer. Experiment with different delay times and
feedback amounts. For example, you can use the settings shown above to achieve a blurring
effect. Increase the feedback amounts for a greater resonant ringing at the rate of feedback
193

Tutorial 28 Processing: Delay lines with feedback
(1000 divided by the delay time). Increase the delay times to achieve discrete echoes. You can
vary the Dry/Wet mix with the hslider.

Note that any time you feed audio signal back into a system, you have a potential for overloading
the system. That’s why it’s important to scale the signal by some factor less than 1.0 (with the *~
objects and the “Feedback” number box objects) before feeding it back into the delay line. Other-
wise the delayed sound will continue indefinitely and even increase as it is added to the new
incoming audio.

Controlling amplitude: normalize~

Since this patch contains user-variable level settings (notably the feedback levels) and since we
don’t know what sound will be coming into the patch, we can’t really predict how we will need to
scale the final output level. If we had used a *~ object just before the ezdac~ to scale the output
amplitude, we could set the output level, but if we later increase the feedback levels, the output
amplitude could become excessive. The normalize~ object is good for handling such unpredict-
able situations.

The normalize~ object allows you to specify a peak (maximum) amplitude that you want sent out
its outlet. It looks at the peak amplitude of its input, and calculates the factor by which it must scale
the signal in order to keep the peak amplitude at the specified maximum. So, with normalize~ the
peak amplitude of the output will never exceed the specified maximum.

normalize~ sends out the current input * peak output / peak input

One potential drawback of normalize~ is that a single loud peak in the input signal can cause nor-
malize~ to scale the entire signal way down, even if the rest of the input signal is very soft. You can
give normalize~ a new peak input value to use, by sending a number or a reset message in the left
inlet.

• Turn audio off and close the Patcher window before proceeding to the next chapter.

Summary

One way to make multiple delayed versions of a signal is to feed the output of tapout~ back into
the input of tapin~, in addition to sending it to the DAC. Because the fed back delayed signal will
be added to the current incoming signal at the inlet of tapin~, it’s a good idea to reduce the output
of tapout~ before feeding it back to tapin~.
 194

Tutorial 28 Processing: Delay lines with feedback
In a patch involving addition of signals with varying amplitudes, it’s often difficult to predict the
amplitude of the summed signal that will go to the DAC. One way to control the amplitude of a
signal is with normalize~, which uses the peak amplitude of an incoming signal to calculate how
much it should reduce the amplitude before sending the signal out.

See Also

normalize~ Scale on the basis of maximum amplitude
tapin~ Input to a delay line
tapout~ Output from a delay line
195

Tutorial 29
Processing: Flange

Variable delay time

So far, we have been delaying signals for a fixed amount of time using tapin~ and tapout~. You can
change the delay time of any tap in the tapout~ object by sending a new number in the proper
inlet; however, this will cause a discontinuity in the output signal at the instant when then new
delay time is received, because tapout~ suddenly begins tapping a new location in the tapin~
buffer.

Changing the delay time creates a discontinuity in the output signal

On the other hand, it’s possible to provide a new delay time to tapout~ using a continuous signal
instead of a discrete Max message. We can use the line~ object to make a continuous transition
between two delay times (just as we did to make continuous changes in amplitude in Tutorial 2).

Providing delay time in the form of a signal

Technical detail: Note that when the delay time is being changed by a continuous signal,
tapout~ has to interpolate between the old delay time and the new delay time for every sample
of output. Therefore, a tapout~ object has to do much more computation whenever a signal is
connected to one of its inlets.
196

Tutorial 29 Processing: Flange
While this avoids the click that could be caused by a sudden discontinuity, it does mean that the
pitch of the output signal will change while the delay time is being changed, emulating the Doppler
effect.

A delayed signal emulates a reflection of the sound wave. As the delay time decreases, it is as if the
(virtual) reflecting wall were moving toward you. The source of the delayed sound (the reflecting
wall) is “moving toward you”, causing an increase in the received frequency of the sound. As the
delay time increases, the reverse is true; the source of the delayed sound is effectively moving away
from you. That is why, during the time when the delay time is actually changing, the perceived
pitch of the output sound changes.

A pitch shift due to Doppler effect is usually less disruptive than a click that’s caused by disconti-
nuity of amplitude. More importantly, the pitch variance that results from continuously varying
the delay time can be used to create some interesting effects.

Technical detail: The Doppler effect occurs when a sound source is moving toward or away
from the listener. The moving sound source is, to some extent, outrunning the wavefronts of
the sound it is producing. That changes the frequency at which the listener receives the wave-
fronts, thus changing the perceived pitch. If the sound source is moving toward the listener,
wavefronts arrive at the listener with a slightly greater frequency than they are actually being
produced by the source. Conversely, if the sound source is moving away from the listener, the
wavefronts arrive at the listener slightly less frequently than they are actually being produced.
The classic case of Doppler effect is the sound of an ambulance siren. As the ambulance passes
you, it changes from moving toward you (producing an increase in received frequency) to
moving away from you (producing a decrease in received frequency). You perceive this as a
swift drop in the perceived pitch of the siren.

A delayed signal emulates a reflection of the sound wave. As the delay time decreases, it is as if
the (virtual) reflecting wall were moving toward you. The source of the delayed sound (the
reflecting wall) is “moving toward you”, causing an increase in the received frequency of the
sound. As the delay time increases, the reverse is true; the source of the delayed sound is effec-
tively moving away from you. That is why, during the time when the delay time is actually
changing, the perceived pitch of the output sound changes.
197

Tutorial 29 Processing: Flange
Flanging: Modulating the delay time

Since the delay time can be provided by any signal, one possibility is to use a time-varying signal
like a low-frequency cosine wave to modulate the delay time. In the example below, a cycle~ object
is used to vary the delay time.

Modulating the delay time with a low-frequency oscillator

The output of cycle~ is multiplied by 0.25 to scale its amplitude. That signal is multiplied by the
basic delay time of 100 ms, to create a signal with an amplitude ±25. When that signal is added to
the basic delay time, the result is a signal that varies sinusoidally around the basic delay time of
100, going as low as 75 and as high as 125. This is used to express the delay time in milliseconds to
the tapout~ object.

When a signal with a time-varying delay (especially a very short delay) is added together with the
original undelayed signal, the result is a continually varying comb filter effect known as flanging.
Flanging can create both subtle and extreme effects, depending on the rate and depth of the mod-
ulation.

Stereo flange with feedback

This tutorial patch is very similar to that of the preceding chapter. The primary difference here is
that the delay times of the two channels are being modulated by a cosine wave, as was described on
the previous page. This patch gives you the opportunity to try a wide variety of flanging effects,
just by modifying the different parameters: the wet/dry mix between delayed and undelayed sig-
nal, the left and right channel delay times, the rate and depth of the delay time modulation, and
the amount of delayed signal that is fed back into the delay line of each channel.

• Send some sound into the audio input of the computer, and click on the buttons of the preset
object to hear different effects. Using the example settings as starting points, experiment with
different values for the various parameters. Notice that the modulation depth can also be con-
trolled by the mod wheel of your synth, demonstrating how MIDI can be used for realtime
control of audio processing parameters.

The different examples stored in the preset object are characterized below.

1. Simple thru of the audio input to the audio output. This is just to allow you to test the input
and output.
 198

Tutorial 29 Processing: Flange
2. The input signal is combined equally with delayed versions of itself, using short (mutually
prime) delay times for each channel. The rate of modulation is set for 0.2 Hz (one sinusoid
every 5 seconds), but the depth of modulation is initially 0. Use the mod wheel of your synth
(or drag on the “Mod Wheel” number box) to introduce some slow flanging.

3. The same as before, but now the modulation rate is 6 Hz. The modulation depth is set very
low for a subtle vibrato effect, but you can increase it to obtain a decidedly un-subtle wide
vibrato.

4. A faster vibrato, with greater depth, and with the delayed signal fed back into the delay line,
creates a complex warbling flange effect.

5. The right channel is delayed a short time for a flange effect and the left channel is delayed a
longer time for an echo effect. Both delay times change sinusoidally over a two second period,
and each delayed signal is fed back into its own delay line (causing a ringing resonance in the
right channel and repeated echoes in the left channel).

6. Both delay times are set long with considerable feedback to create repeated echoes. The rate
(and pitch) of the echoes is changed up and down by a very slow modulating frequency—one
cycle every 10 seconds.

7. A similar effect, but modulated sinusoidally every 2 seconds.

8. Similar to example 5, but with flanging occurring at an audio rate of 55 Hz, and no original
sound in the mix. The source sound is completely distorted, but the modulation rate gives the
distortion its fundamental frequency.

Summary

You can provide a continuously varying delay time to tapout~ by sending a signal in its inlet. As
the delay time varies, the pitch of the delayed sound shifts oppositely. You can use a repeating low
frequency wave to modulate the delay time, achieving either subtle or extreme pitch-variation
effects. When a sound with a varying delay time is mixed with the original undelayed sound, the
result is a variable comb filtering effect known as flanging. The depth (strength) of the flanging
effect depends primarily on the amplitude of the signal that is modulating the delay time.

See Also

noise~ White noise generator
rand~ Band-limited random signal
tapin~ Input to a delay line
tapout~ Output from a delay line
199

Tutorial 30
Processing: Chorus

The chorus effect

Why does a chorus of singers sound different from a single singer? No matter how well trained a
group of singers may be, they don’t sing identically. They’re not all singing precisely the same pitch
in impeccable unison, so the random, unpredictable phase cancellations that occur as a result of
these slight pitch differences are thought to be the source of the chorus effect.

We’ve already seen in the preceding chapter how slight pitch shifts can be introduced by varying
the delay time of a signal. When we mix this signal with its original undelayed version, we create
interference between the two signals, resulting in a constantly varying filtering effect known as
flanging. A less predictable effect called chorusing can be achieved by substituting a random fluc-
tuation of the delay time in place of the sinusoidal fluctuation we used for flanging.

Low-frequency noise: rand~

The noise~ object (introduced in Tutorial 3) produces a signal in which every sample has a ran-
domly chosen value between -1 and 1; the result is white noise, with roughly equal energy at every
frequency. This white noise is not an appropriate signal to use for modulating the delay time,
though, because it would randomly change the delay time so fast (every sample, in fact) that it
would just sound like added noise. What we really want is a modulating signal that changes more
gradually, but still unpredictably.

The rand~ object chooses random numbers between -1 and 1, but does so less frequently than
every sample. You can specify the frequency at which it chooses a new random value. In between
those randomly chosen samples, rand~ interpolates linearly from one value to the next to produce
an unpredictable but more contiguous signal.

Random values chosen every sample Random values chosen less frequently
200

Tutorial 30 Processing: Chorus
The output of rand~ is therefore still noise, but its spectral energy is concentrated most strongly in
the frequency region below the frequency at which it chooses its random numbers. This “low-fre-
quency noise” is a suitable signal to use to modulate the delay time for a chorusing effect.

Unpredictable variations using rand~

The tutorial patch for this chapter is substantially similar to the flanging patch in the previous
chapter. The main difference between the two signal networks is that the cycle~ object for flanging
has been replaced by a rand~ object for chorusing. The scope~ object in this patch is just for visu-
alizing the modulating effect of the rand~ object.

Multiple delays for improved chorus effect

We can improve this chorus effect by increasing the number of slightly different signals we com-
bine. One way to do this —as we have done in this patch— is to feed the randomly delayed signal
back into the delay line, where it’s combined with new incoming signal. The output of tapout~ will
thus be a combination of the new variably delayed (and variably pitch shifted) signal and the pre-
viously (but differently) delayed/shifted signal.

Increasing the number of “voices” using feedback to the delay line

The balance between these signals is determined by the settings for “LFeedback” and “RFeed-
back”, and the combination of these signals and the undelayed signal is balanced by the “DryWet-
Mix” value. To obtain the fullest “choir” with this patch, we chose delay times (17 ms and 23 ms)
201

Tutorial 30 Processing: Chorus
and a modulation rate (8 Hz, a period of 125 ms) that are all mutually prime numbers, so that they
are never in sync with each other.

• Click on the toggle to turn audio on. Send some sound into the audio input of the computer to
hear the chorusing effect. Experiment by changing the values for the different parameters. For
a radically different effect, try some extreme values (longer delay times, more feedback, much
greater chorus depth, very slow and very fast modulation rates, etc.).

Summary

The chorus effect is achieved by combining multiple copies of a sound—each one delayed and
pitch shifted slightly differently—with the original undelayed sound. This can be done by contin-
ual slight random modulation of the delay time of two or more different delay taps. The rand~
object sends out a signal of linear interpolation between random values (in the range -1 to 1) cho-
sen at a specified rate; this signal is appropriate for the type of modulation required for chorusing.
Feeding the delayed signal back into the delay line increases the complexity and richness of the
chorus effect. As with most processing effects, interesting results can also be obtained by choosing
“outrageous” extreme values for the different parameters of the signal network.

See Also

rand~ Band-limited random signal
tapout~ Output from a delay line

Technical detail: One can obtain an even richer chorus effect by increasing the number of dif-
ferent delay taps in tapout~, and applying a different random modulation to each delay time.
 202

Tutorial 31
Processing: Comb filter

Comb filter: comb~

The minimum delay time that can be used for feedback into a delay line using tapin~ and tapout~
is determined by the signal vector size. However, many interesting filtering formulae require feed-
back using delay times of only a sample or two. Such filtering processes have to be programmed
within a single MSP object.

An example of such an object is comb~, which implements a formula for comb filtering. Generally
speaking, an audio filter is a frequency-dependent amplifier; it boosts the amplitude of some fre-
quency components of a signal while reducing other frequencies. A comb filter accentuates and
attenuates the input signal at regularly spaced frequency intervals—that is, at integer multiples of
some fundamental frequency.

The comb~ object sends out a signal that is a combination of a) the input signal, b) the input signal
it received a certain time ago, and c) the output signal it sent that same amount of time ago (which
would have included prior delays). In the inlets of comb~ we can specify the desired amount of
each of these three (a, b, and c), as well as the delay time (we’ll call it d).

You can adjust all the parameters of the comb filter

The fundamental frequency of the comb filter depends on the delay time, and the intensity of the
filtering depends on the other three parameters. Note that the scaling factor for the feedback (the

Technical detail: The fundamental frequency of a comb filter is the inverse of the delay time.
For example, if the delay time is 2 milliseconds (1/500 of a second), the accentuation occurs at
intervals of 500 Hz (500, 1000, 1500, etc.), and the attenuation occurs between those frequen-
cies. The extremity of the filtering effect depends on the factor (between 0 and 1) by which the
feedback is scaled. As the scaling factor approaches 1, the accentuation and attenuation become
more extreme. This causes the sonic effect of resonance (a “ringing” sound) at the harmonics of
the fundamental frequency.

Technical detail: At any given moment in time (we’ll call that moment t), comb~ uses the value
of the input signal (xt), to calculate the output yt in the following manner.

yt = axt + bx(t-d) + cy(t-d)
203

Processing: Comb filter Tutorial 31

right inlet) should usually not exceed 1, since that would cause the output of the filter to increase
steadily as a greater and greater signal is fed back.

Trying out the comb filter

The tutorial patch enables you to try out the comb filter by applying it to different sounds. The
patch provides you with three possible sound sources for filtering—the audio input of your com-
puter, a band-limited pulse wave, or white noise—and three filtering options—unfiltered, comb
filter with parameters adjusted manually, or comb filter with parameters continuously modulated
by other signals.

Choose a sound source and route it to the desired filtering using the pop-up menus

• Click on the buttons of the preset to try out some different combinations, with example
parameter settings. Listen to the effect of the filter, then experiment by changing parameters
yourself. You can use MIDI note messages from your synth to provide pitch and velocity (fre-
quency and amplitude) information for the pulse wave, and you can use the mod wheel to
change the delay time of the filter.

A comb filter has a characteristic harmonic resonance because of the equally spaced frequencies of
its peaks and valleys of amplification. This trait is particularly effective when the comb is swept up
and down in frequency, thus emphasizing different parts of the source sound. We can cause this
frequency sweep simply by varying the delay time.

Band-limited pulse

The effects of a filter are most noticeable when there are many different frequencies in the source
sound, which can be altered by the filter. If we want to apply a comb filter to a pitched sound with a
harmonic spectrum, it makes most sense to use a sound that has many partials such as a sawtooth
wave or a square wave.

These mathematically ideal waves may be too “perfect” for use as computer sound waves
Setup 204

Tutorial 31 Processing: Comb filter
The problem with such mathematically derived waveforms, though, is that they may actually be
too rich in high partials. They may have partials above the Nyquist rate that are sufficiently strong
to cause inharmonic aliasing. (This issue is discussed in more detail in Tutorial 5.)

For this tutorial we’re using a waveform called a band-limited pulse. A band-limited pulse has a
harmonic spectrum with equal energy at all harmonics, but has a limited number of harmonics in
order to prevent aliasing. The waveform used in this tutorial patch has ten harmonics of equal
energy, so its highest frequency component has ten times the frequency of the fundamental. That
means that we can use it to play fundamental frequencies up to 2,205 Hz if our sampling rate is
44,100 Hz. (Its highest harmonic would have a frequency of 22, 050 Hz, which is equal to the
Nyquist rate.) Since the highest key of a 61-key MIDI keyboard plays a frequency of 2,093 Hz, this
waveform will not cause aliasing if we use that as an upper limit.

Playing a band-limited pulse wave with MIDI

Velocity-to-amplitude conversion: gain~

The subpatch p Pulse_Wave contains a simple but effective way to play a sound in MSP via MIDI. It
uses a poly object to implement voice stealing, limiting the incoming MIDI notes to one note at a
time. (It turns off the previous note by sending it out with a velocity of 0 before it plays the incom-
ing note.) It then uses mtof to convert the MIDI note number to the correct frequency value for

Technical detail: In an idealized (optimally narrow) pulse wave, each cycle of the waveform
would consist of a single sample with a value of 1, followed by all samples at 0. This would create
a harmonic spectrum with all harmonics at equal amplitude, continuing upward infinitely. It’s
possible to make an MSP signal network that calculates—based on the fundamental frequency
and the sampling rate—a band-limited pulse signal containing the maximum number of pos-
sible harmonics without foldover. In this case, though, we have chosen just to use a stored wave-
form containing ten partials.
205

Processing: Comb filter Tutorial 31

MSP, and it uses the MSP object gain~ to scale the amplitude of the signal according to the MIDI
velocity.

Converting MIDI pitch and velocity data to frequency and amplitude information for MSP

The gain~ object takes both a signal and a number in its left inlet. The number is used as an ampli-
tude factor by which to scale the signal before sending it out. One special feature of gain~ (aside
from its utility as a user interface object for scaling a signal) is that it can convert the incoming
numbers from a linear progression to a logarithmic or exponential curve. This is very appropriate
in this instance, since we want to convert the linear velocity range (0 to 127) into an exponential
amplitude curve (0 to 1) that corresponds roughly to the way that we hear loudness. Each change
of velocity by 10 corresponds to a change of amplitude by 6 dB. The other useful feature of gain~ is
that, rather than changing amplitude abruptly when it receives a new number in its left inlet, it
takes a few milliseconds to progress gradually to the new amplitude factor. The time it takes to
make this progression can be specified by sending a time, in milliseconds, in the right inlet. In this
patch, we simply use the default time of 20 ms.

• Choose one of the preset example settings, and choose “Pulse Wave” from the “Sound Source”
pop-up menu. Play long notes with the MIDI keyboard. You can also obtain a continuous
sound at any amplitude and frequency by sending numbers from the pitch and velocity num-
ber box objects (first velocity, then pitch) into the inlets of the p Pulse_Wave subpatch.

Varying parameters to the filter

As illustrated in this patch, it’s usually best to change the parameters of a filter by using a gradually
changing signal instead of making an abrupt change with single number. So parameter changes
made to the “Adjusted By Hand” comb~ object are sent first to a line~ object for interpolation over
a time of 25 ms.

The “Modulated” comb~ object has its delay time varied at low frequency according to the shape of
the band-limited pulse wave (just because it’s a more interesting shape than a simple sinusoid).
The modulation could actually be done by a varying signal of any shape. You can vary the rate of
this modulation using the mod wheel of your synth (or just by dragging on the number box). The
gain of the x and y delays (the two rightmost inlets) is modulated by a sine wave ranging between
Setup 206

Tutorial 31 Processing: Comb filter
0.01 and 0.99 (for the feedback gain) and a cosine wave ranging from 0.01 to 0.49 (for the feedfor-
ward gain). As the amplitude of one increases, the other decreases.

• Experimenting with different combinations of parameter values may give you ideas for other
types of modulation you might want to design in your own patches.

Summary

The comb~ object allows you to use very short feedback delay times to comb filter a signal. A comb
filter creates frequency-dependent increases and decreases of amplitude in the signal that passes
through it, at regularly spaced (i.e., harmonically related) frequency intervals. The frequency
interval is determined by the inverse of the delay time. The comb filter is particularly effective
when the delay time (and thus the frequency interval) changes over time, emphasizing different
frequency regions in the filtered signal.

The user interface object gain~ is useful for scaling the amplitude of a signal according to a specific
logarithmic or exponential curve. Changes in amplitude caused by gain~ take place gradually over
a certain time (20 ms by default), so that there are no unwanted sudden discontinuities in the out-
put signal.

See Also

comb~ Comb filter
gain~ Exponential scaling volume slider
207

208

This section, MSP Reference, contains information about each individual MSP objects. It
includes:

MSP Objects

Contains precise technical information on the workings of each of the built-in and external
objects supplied with MSP, organized in alphabetical order.

MSP Object Thesaurus

Consists of a reverse index of MSP objects, alphabetized by keyword rather than by object
name. Use this Thesaurus when you want to know what object(s) are appropriate for the task
you are trying to accomplish, then look up those objects by name in the Objects section.

Manual Conventions

The central building block of Max is the object. Names of objects are always displayed in bold
type, like this.

Messages (the arguments that are passed to and from objects) are displayed in plain type, like this.

Text that is displayed in blue type, like this, is hyperlinked to a Tutorial or MSP object reference
page within this document. Clicking on the blue text will jump to the Tutorial or the reference
page for the specified object.

In the “See Also” sections, anything in regular type is a reference to a section of either this manual
or the Max Tutorials and Topics manual.

!-~ Signal subtraction
(inlets reversed)

209

The !-~ object functions just like the -~ object, but the inlet order is reversed.

Input
signal In left inlet: The signal is subtracted from the signal coming into the right inlet, or

a constant value received in the right inlet.

In right inlet: The signal coming into the left inlet or a constant value received in
the left inlet is subtracted from this signal.

float or int In left inlet: An amount to subtract from the signal coming into the right inlet. If a
signal is also connected to the left inlet, a float or int is ignored.

In right inlet: Subtracts the signal coming into the left inlet from this value. If a
signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial amount to subtract from the signal coming into the right

inlet. If a signal is connected to the left inlet, the argument is ignored. If no argu-
ment is present, and no signal is connected to the left inlet, the initial value is 0 by
default.

Output
signal The difference between the two inputs.

Examples

-~ with the inlets reversed

See Also

+~ Add signals

 210

!/~ Signal division
(inlets reversed)

The !/~ object functions just like the /~ object, but the inlet order is reversed.

Note: Division is not a computationally efficient operation. The /~ object is optimized to multiply
a signal coming into the right inlet by the reciprocal of either the initial argument or an int or float
received in the left inlet. However, when two signals are connected, !/~ uses the significantly more
inefficient division procedure.

Input
signal In left inlet: The signal is used as the divisor, to be divided into the signal coming

into the right inlet, or the constant value received in the right inlet.

In right inlet: The signal is divided by a signal coming into the left inlet, or a con-
stant value received in the left inlet.

float or int In left inlet: A number by which to divide the signal coming into the right inlet. If
a signal is also connected to the left inlet, a float or int is ignored.

In right inlet: The number is divided by the signal coming into the left inlet. If a
signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial value by which to divide the signal coming into the left

inlet. If a signal is connected to the right inlet, the argument is ignored. If no argu-
ment is present, and no signal is connected to the right inlet, the initial value is 1
by default.

Output
signal The ratio of the two inputs, i.e., the right input divided by the left input.

Examples

/~ with the inlets reversed

See Also

*~ Multiply two signals

!=~ Not equal to,
comparison of two signals
Input
signal In left inlet: The signal is compared to a signal coming into the right inlet, or a

constant value received in the right inlet. If it is not equal to the value in the right
inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into the
left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming into
the left inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial comparison value for the signal coming into the left inlet.

1 is sent out if the signal is not equal to the argument; otherwise, 0 is sent out. If a
signal is connected to the right inlet, the argument is ignored. If no argument is
present, and no signal is connected to the right inlet, the initial value is 0 by
default.

Output
signal If the signal in the left inlet is not equal to the value in the right inlet, 1 is sent out;

otherwise, 0 is sent out.

Examples

Use !=~ to detect the non-zero portion of a signal or envelope
211

!=~ Not equal to,
comparison of two signals
See Also

==~ Is equal to, comparison of two signals
<~ Is less than, comparison of two signals
<=~ Is less than or equal to, comparison of two signals
>~ Is greater than, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals
change~ Report signal direction
edge~ Detect logical signal transitions
 212

%~ Divide two signals,
output the remainder

213

Input
signal In left inlet: The signal is divided by a signal coming into the right inlet, or a con-

stant value received in the right inlet, and the remainder is sent out the outlet.

In right inlet: The signal is used as the divisor, to be divided into the signal com-
ing into the left inlet, or the constant value received in the left inlet.

float or int In left inlet: The number is divided by the signal coming into the right inlet. If a
signal is also connected to the left inlet, a float or int is ignored.

In right inlet: A number by which to divide the signal coming into the left inlet. If
a signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial value by which to divide the signal coming into the left

inlet. If a signal is connected to the right inlet, the argument is ignored. If no argu-
ment is present, and no signal is connected to the right inlet, the initial value is 1
by default.

Output
signal When the two signals in the inlets are divided, the remainder is sent out the outlet.

% is called the modulo operator.

Examples

See Also

!/~ Signal division (inlets reversed)
/~ Divide one signal by another
Tutorial 8 Doing math in Max

 214

*~ Multiply two signals

Input
signal In left inlet: The signal is multiplied by the signal coming into the right inlet, or a

constant value received in the right inlet.

In right inlet: The signal is multiplied by the signal coming into the left inlet, or a
constant value received in the left inlet.

float or int In left inlet: A factor by which to multiply the signal coming into the right inlet. If
a signal is also connected to the left inlet, a float or int is ignored.

In right inlet: A factor by which to multiply the signal coming into the left inlet. If
a signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial value by which to multiply the signal coming into the left

inlet. If a signal is connected to the right inlet, the argument is ignored. If no argu-
ment is present, and no signal is connected to the right inlet, the initial value is 0
by default.

Output
signal The product of the two inputs.

Examples

Scale a signal’s amplitude by a constant or changing value, or by another audio signal

See Also

/~ Divide one signal by another
!/~ Signal division (inlets reversed)
Tutorial 2 Fundamentals: Adjustable oscillator
Tutorial 8 Synthesis: Tremolo and ring modulation

-~ Signal subtraction

215

Input
signal In left inlet: The signal coming into the right inlet or a constant value received in

the right inlet is subtracted from this signal.

In right inlet: The signal is subtracted from the signal coming into the left inlet, or
a constant value received in the left inlet.

float or int In left inlet: Subtracts the signal coming into the right inlet from this value. If a
signal is also connected to the left inlet, a float or int is ignored.

In right inlet: An amount to subtract from the signal coming into the left inlet. If a
signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial amount to subtract from the signal coming into the left

inlet. If a signal is connected to the right inlet, the argument is ignored. If no argu-
ment is present, and no signal is connected to the right inlet, the initial value is 0
by default.

Output
signal The difference between the two inputs.

Examples

Negative DC offset Subtraction used to invert a signal before adding it in

See Also

+~ Add signals
!-~ Signal subtraction (inlets reversed)

 216

+~ Add signals

Note: Any signal inlet of any MSP object automatically uses the sum of all signals received in that
inlet. Thus, the +~ object is necessary only to show signal addition explicitly, or to add a float or int
offset to a signal.

Input
signal In left inlet: The signal is added to the signal coming into the right inlet, or a con-

stant value received in the right inlet.

In right inlet: The signal is added to the signal coming into the right inlet, or a
constant value received in the left inlet.

float or int In left inlet: An offset to add to the signal coming into the right inlet. If a signal is
also connected to the left inlet, a float or int is ignored.

In right inlet: An offset to add to the signal coming into the left inlet. If a signal is
also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial offset to add to the signal coming into the left inlet. If a

signal is connected to the right inlet, the argument is ignored. If no argument is
present, and no signal is connected to the right inlet, the initial value is 0 by
default.

Output
signal The sum of the two inputs.

Examples

Mix signals......or add a DC offset to a signal

See Also

+=~ Signal accumulator
-~ Signal subtraction
!-~ Signal subtraction (inlets reversed)

+=~ Signal Accumulator

217

Input
signal Each sample of the input is added to the current sum and the sum is the corre-

sponding sample of the output signal. For instance, assuming the sum started at
0, an input signal consisting of 1,1,1,1 would produce 1,2,3,4 as an output signal.

bang Resets the sum to 0.

set The word set, followed by a number, sets the sum to that number.

bang In left inlet: Outputs the currently stored value.

set The word set, followed by a number, sets the stored value to that number, without
triggering output.

Arguments
float Optional. Sets the initial value for the sum. The default is 0.

Output
signal Each sample of the output is the sum of all previous input samples.

Examples

See Also

+~ Add signals

/~ Divide one signal
by another
Note: Division is not a computationally efficient operation. The /~ object is optimized to multiply
a signal coming into the left inlet by the reciprocal of either the initial argument or an int or float
received in the right inlet. However, when two signals are connected, /~ uses the significantly more
inefficient division procedure.

Input
signal In left inlet: The signal is divided by a signal coming into the right inlet, or a con-

stant value received in the right inlet.

In right inlet: The signal is used as the divisor, to be divided into the signal com-
ing into the left inlet, or the constant value received in the left inlet.

float or int In left inlet: The number is divided by the signal coming into the right inlet. If a
signal is also connected to the left inlet, a float or int is ignored.

In right inlet: A number by which to divide the signal coming into the left inlet. If
a signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial value by which to divide the signal coming into the left

inlet. If a signal is connected to the right inlet, the argument is ignored. If no argu-
ment is present, and no signal is connected to the right inlet, the initial value is 1
by default.

Output
signal The ratio of the two inputs, i.e., the left input divided by the right input.

Examples

It is more computationally efficient to use an equivalent multiplication when possible
 218

/~ Divide one signal
by another
See Also

!/~ Signal division (inlets reversed)
*~ Multiply two signals
%~ Divide two signals, output the remainder
219

 220

<~ Is less than,
comparison of two signals

Input
signal In left inlet: The signal is compared to a signal coming into the right inlet, or a

constant value received in the right inlet. If it is less than the value in the right
inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into the
left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming into
the left inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial comparison value for the signal coming into the left inlet.

1 is sent out if the signal is less than the argument; otherwise, 0 is sent out. If a sig-
nal is connected to the right inlet, the argument is ignored. If no argument is
present, and no signal is connected to the right inlet, the initial value is 0 by
default.

Output
signal If the signal in the left inlet is less than the value in the right inlet, 1 is sent out; oth-

erwise, 0 is sent out.

Examples

Convert any signal to only 1 and 0 values

See Also

<=~ Is less than or equal to, comparison of two signals
>~ Is greater than, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals
==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals

<=~ Is less than or equal to,
comparison of two signals

221

Input
signal In left inlet: The signal is compared to a signal coming into the right inlet, or a

constant value received in the right inlet. If it is less than or equal to the value in
the right inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into the
left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming into
the left inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial comparison value for the signal coming into the left inlet.

1 is sent out if the signal is less than or equal to the argument; otherwise, 0 is sent
out. If a signal is connected to the right inlet, the argument is ignored. If no argu-
ment is present, and no signal is connected to the right inlet, the initial value is 0
by default.

Output
signal If the signal in the left inlet is less than or equal to the value in the right inlet, 1 is

sent out; otherwise, 0 is sent out.

Examples

See Also

<~ Is less than, comparison of two signals
>~ Is greater than, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals
==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals

==~ Is equal to,
comparison of two signals
Input
signal In left inlet: The signal is compared to a signal coming into the right inlet, or a

constant value received in the right inlet. If it is equal to the value in the right inlet,
1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into the
left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming into
the left inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial comparison value for the signal coming into the left inlet.

1 is sent out if the signal is equal to the argument; otherwise, 0 is sent out. If a sig-
nal is connected to the right inlet, the argument is ignored. If no argument is
present, and no signal is connected to the right inlet, the initial value is 0 by
default.

Output
signal If the signal in the left inlet is equal to the value in the right inlet, 1 is sent out; oth-

erwise, 0 is sent out.

Examples

Detect when a signal equals a certain value, or when two signals equal each other
 222

==~ Is equal to,
comparison of two signals
See Also

<~ Is less than, comparison of two signals
<=~ Is less than or equal to, comparison of two signals
>~ Is greater than, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals
!=~ Not equal to, comparison of two signals
change~ Report signal direction
edge~ Detect logical signal transitions
223

 224

>~ Is greater than,
comparison of two signals

Input
signal In left inlet: The signal is compared to a signal coming into the right inlet, or a

constant value received in the right inlet. If it is greater than the value in the right
inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into the
left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming into
the left inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial comparison value for the signal coming into the left inlet.

1 is sent out if the signal is greater than the argument; otherwise, 0 is sent out. If a
signal is connected to the right inlet, the argument is ignored. If no argument is
present, and no signal is connected to the right inlet, the initial value is 0 by
default.

Output
signal If the signal in the left inlet is greater than the value in the right inlet, 1 is sent out;

otherwise, 0 is sent out.

Examples

Convert any signal to only 1 and 0 values

See Also

<~ Is less than, comparison of two signals
<=~ Is less than or equal to, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals
==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals
sah~ Sample and hold

>=~ Is greater thanor equal to,
comparison of two signals

225

Input
signal In left inlet: The signal is compared to a signal coming into the right inlet, or a

constant value received in the right inlet. If it is greater than or equal to the value
in the right inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into the
left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming into
the left inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial comparison value for the signal coming into the left inlet.

1 is sent out if the signal is greater than or equal to the argument; otherwise, 0 is
sent out. If a signal is connected to the right inlet, the argument is ignored. If no
argument is present, and no signal is connected to the right inlet, the initial value
is 0 by default.

Output
signal If the signal in the left inlet is greater than or equal to the value in the right inlet, 1

is sent out; otherwise, 0 is sent out.

Examples

See Also

<~ Is less than, comparison of two signals
<=~ Is less than or equal to, comparison of two signals
>~ Is greater than, comparison of two signals
==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals
sah~ Sample and hold

2d.wave~ Two-dimensional
wavetable
Input
signal In left inlet: Input signal values progressing from 0 to 1 are used to scan a specified

range of samples in a buffer~ object. The output of a phasor~ can be used to con-
trol 2d.wave~ as an oscillator, treating the range of samples in the buffer~ as a
repeating waveform. However, note that when changing the frequency of a pha-
sor~ connected to the left inlet of 2d.wave~, the perceived pitch of the signal com-
ing out of 2d.wave~ may not correspond exactly to the frequency of phasor~ itself
if the stored waveform contains multiple or partial repetitions of a waveform. You
can invert the phasor~ to play the waveform backwards.

In 2nd inlet: Input signal values progressing from 0 to 1 are used to determine
which of the row(s) specified by the rows message will be used for playback.You
can invert the phasor~ to reverse the order in which row(s) are played.

In 3rd inlet: The start of the waveform as a millisecond offset from the beginning
of a buffer~ object’s sample memory.

In 4th inlet: The end of the waveform as a millisecond offset from the beginning
of a buffer~ object’s sample memory.

float or int In 3rd or 4th inlets: Numbers can be used instead of signal objects to control the
start and end points of the waveform, provided a signal is not connected to the
inlet that receives the number.

rows The word rows, followed by an int, sets the number of rows a given range of an
audio file will be divided into. The phase input signal value received in the 2nd
inlet of 2d.wave~ determines which row(s) are used for playback. The default
value is 0.

set The word set, followed by a symbol, sets the buffer~ used by 2d.wave~ for its stored
waveform. The symbol can optionally be followed by two values setting new wave-
form start and end points. If the values are not present, the default start and end
points (the start and end of the sample) are used. If signal objects are connected
to the start and/or end point inlets, the start and/or end point values are ignored.

Arguments
symbol Obligatory. Names the buffer~ object whose sample memory is used by 2d.wave~

for its stored waveform. Note that if the underlying data in a buffer~ changes, the
signal output of 2d.wave~ will change, since it does not copy the sample data in a
buffer~. 2d.wave~ always uses the first n channels of a multi-channel buffer~,
where n is the number of the 2d.wave~ object’s output channels. The default num-
ber of channels, set by the third argument to the 2d.wave~ object, is 1.

float or int Optional. After the buffer~ name argument, you can type in values for the start
and end points of the waveform, as millisecond offsets from the beginning of a
 226

2d.wave~ Two-dimensional
wavetable
buffer~ object’s sample memory. By default the start point is 0 and the end point is
the end of the sample. If you want to set a non-zero start point but retain the sam-
ple end as the waveform end point, use only a single typed-in argument after the
buffer~ name. If a signal is connected to the start point (middle) inlet, the initial
waveform start point argument is ignored. If a signal is connected to the end point
(right) inlet, the initial waveform end point is ignored. The number of channels in
the buffer~ file and the number of rows to be used may also be specified.

int Optional. Sets the number of output channels, which determines the number of
outlets that the 2d.wave~ object will have. The maximum number of channels is
8. The default is 1. If the audio file being played has more output channels than
the 2d.wave~ object, higher-numbered channels will not be played. If the audio
file has fewer channels, the signals coming from the extra outlets of 2d.wave~ will
be 0.

Output
signal The portion of the buffer~ specified by the 2d.wave~ object’s start and end points

is scanned by signal values ranging from 0 to 1 in the 2d.wave~ object’s inlet, and
the corresponding sample value from the buffer~ is sent out the 2d.wave~ object’s
outlet. If the signal received in the object’s inlet is a repeating signal such as a saw-
tooth wave from a phasor~, the resulting output will be a waveform (excerpted
from the buffer~) repeating at the frequency corresponding to the repetition of
the input signal.

Examples

Loop through part of a sample, treating it as a variable-size wavetable
227

2d.wave~ Two-dimensional
wavetable
See Also

buffer~ Store audio samples
groove~ Variable-rate looping sample playback
phasor~ Sawtooth wave generator
play~ Position-based sample playback
wave~ Variable-size wavetable
Tutorial 15 Sampling: Variable-length wavetable
 228

abs~ Absolute value
of a signal

229

Input
signal Any signal.

Arguments
None.

Output
signal A signal consisting of samples which are the absolute (i.e., non-negative) value of

the samples in the input signal.

Examples

Convert negative signal values to positive signal values

See Also

avg~ Signal average

 230

acos~ Signal
arc-cosine function

Input
signal Input to a arc-cosine function.

Arguments
None.

Output
signal The arc-cosine of the input in radians.

Examples

 Using acos~ to create an inverse linear ramp in radians (-π—π).

See Also

acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function

acosh~ Signal hyperbolic
arc-cosine function

231

Input
signal Input to a hyperbolic arc-cosine function.

Arguments
None.

Output
signal The hyperbolic arc-cosine of the input.

Examples

See Also

acos~ Signal arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function

adc~ Audio input
and on/off
Input
int A non-zero number turns on audio processing in all loaded patches. 0 turns off

audio processing in all loaded patches.

open Opens the DSP Status window.

set The word set, followed by two numbers, sets the logical input channel for one of
the object's signal outlets. The first number specifies the outlet number, where 1 is
the leftmost outlet. The second number specifies the logical input channel (from
1 to 512). If the second number is 0, the outlet sends out the zero signal.

start Turns on audio processing in all loaded patches.

stop Turns off audio processing in all loaded patches.

startwindow Turns on audio processing only in the patch in which this adc~ is located, and in
subpatches of that patch. Turns off audio processing in all other patches.

wclose Closes the DSP Status window if it is open

(mouse) Double-clicking on adc~ opens the DSP Status window.

Arguments
int Optional. You can create a adc~ object that uses one or more audio input channel

numbers between 1 and 512. These numbers refer to logical channels and can be
dynamically reassigned to physical device channels of a particular driver using
either the DSP Status window, its I/O Mappings subwindow, or an adstatus object
with an input keyword argument. If the computer’s built-in audio hardware is
being used, there will be two input channels available. Other audio drivers and/or
devices may have more than two channels. If no argument is typed in, adc~ will
have two outlets, initially set to logical input channels 1 and 2.

Output
signal The signal arriving at the computer’s input is sent out, one channel per outlet. If

there are no typed-in arguments, the channels are 1 and 2, numbered left-to-
right; otherwise the channels are in the order specified by the arguments.
 232

adc~ Audio input
and on/off
Examples

Audio input for processing and recording

See Also

adstatus Access audio driver output channels
ezadc~ Audio on/off; analog-to-digital converter
dac~ Audio output and on/off
Audio I/O Audio input and output with MSP
Tutorial 13 Sampling: Recording and playback
233

 234

adoutput~ Report and control
audio driver settings

Input
set The word set, followed by two numbers, assigns an audio driver output channel to

a signal outlet of the adoutput~ object. The first number is the index of the outlet,
where a value of 1 refers to the left outlet. The second number is the index of the
audio driver output device channel where 1 refers to the first channel. If the sec-
ond number if 0, the specified outlet is turned off and outputs a zero signal.

Arguments
int Optional. The arguments specify output channels of the current audiodriver.

There is no limit to the number of channels you can specify. By default, adoutput~
creates two outlets and assigns the audio output from channels 1 and 2 of the cur-
rent audiodriver to them. Note that these channel numbers are not the same as the
logical channel numbers used by the dac~ and adc~ objects, but represent the
“physical” outputs of the driver after any remapping has taken place. You config-
ure the relationship between logical dac~ channels and the audiodriver's real
channels with the I/O Mappings subwindow of the DSP Status window.

Output
signal Each outlet of adoutput~ outputs a signal from the assigned audiodriver channel,

delayed by the number of samples of the current signal vector size.

Examples

Capture the output of physical DAC channels to record (or re-process) the output of your patch

See Also

adstatus Report and control audio driver settings
dac~ Audio output and on/off

adstatus Access audio driver
output channels
The adstatus object controls different audio settings depending on the argument you use. The
possible arguments are listed in the Arguments section below.

Input
bang In left inlet: Reports the current state of the setting. In many cases, messages are

sent out the adstatus object's left outlet to set a pop-up menu object to display the
current setting with a set message. In these cases, the numerical value of the set-
ting is sent out the adstatus object's right outlet. The exact behaviors are listed in
the Output section below.

override In left inlet: The word override, followed by a 1, turns on override mode for the set-
ting associated with the object. When override mode is enabled, any change to the
setting is not saved in the MSP Preferences file. The message override 0 turns over-
ride mode off. By default, override is off for all settings. However, some settings
are specific to audio drivers and may not be saved by the driver.

int In left inlet: Changes the setting. In most cases, the number will correspond to the
index of the menu item whose value was set by the bang message to adstatus.

In right inlet: If the adstatus object is used with the input, iovs, output, sigvs, sr
settings, an int in the right inlet sets the value numerically rather than by using a
menu index (see the reset or loadbang message below). For all other settings, a
number in the right inlet behaves identically to one in the left inlet.

set In left inlet: The word set, followed by a number between 1 and 512, changes the
logical channel associated with an adstatus input or adstatus output object. The
current real audio driver input or output channel set for the new logical channel is
sent out the object's outlets.

float Same as int.

reset or loadbang For adstatus objects that work with pop-up menus, the reset or loadbang messages
output the necessary messages to make a pop-up menu that can control the adsta-
tus object. The clear message is sent out first, followed by an append message for
each menu item, followed by a set message to set the displayed value of the menu
based on the current value of the setting.

Argument Behavior

cpu None.

cpulimit Sets the percentage of CPU utilization above which audio processing
will be suspended. A value of 0 turns off CPU utilization limiting.

driver The number is interpreted as an index into the menu of available
audio drivers generated by adstatus driver. The number loads the
driver object corresponding to the menu index.
235

adstatus Access audio driver
output channels
info None.

input The number is interpreted as an index into the menu of available
audio input channels generated by adstatus input. The number sets
the object's assigned logical channel to accept input from the driver's
channel corresponding to the menu index.

iovs The number is interpreted as an index into the menu of available I/O
vector sizes generated by adstatus iovs. The number sets the driver's I/
O vector size to the value of the item at the specified menu index.

latency None.

numinputs None.

numoutputs None.

optimize 0 turns optimize mode off, 1 turns optimize mode on.

option The number is interpreted as an index into the menu of choices for
the specified option generated by adstatus option. The number sets
the option to the value that corresponds with the menu index.

optionname None.

output The number is interpreted as an index into the menu of available
audio output channels generated by adstatus output. The number
sets the object's assigned logical channel to output to the driver's
channel corresponding to the menu index.

overdrive 0 turns overdrive mode off, 1 turns overdrive mode on.

sigvs The number is interpreted as an index into the menu of available sig-
nal vector sizes generated by adstatus sigvs. The number sets the cur-
rent signal vector size to the value of the item at the specified menu
index.

sr The number is interpreted as an index into the menu of available
sampling rates generated by adstatus sr. The number sets the current
sampling rate to the value of the item at the specified menu index.

switch 0 turns the DSP off, 1 turns it on.

takeover 0 turns scheduler in audio interrupt mode off, 1 turns it on.

 timecode 0 turns timecode output off, 1 turns it on.
 236

adstatus Access audio driver
output channels
Arguments
various Obligatory. The first argument is a symbol that specifies the setting to be con-

trolled by the adstatus object. Some settings require an additional int argument.
The possible settings are:

cpu Reports current CPU utilization.

cpulimit Reports and sets the CPU utilization limit as a percentage from 0-
100.

driver Lists the available audio drivers and allows the current one to be
changed.

info Reports the number of function calls and signals used in the top level
DSP chain.

 input Requires an additional argument specifying a logical channel num-
ber (used by the adc~ object) between 1 and 512. Lists the available
audio driver input channels and allows the current setting to be
changed.

iovs Reports the available I/O vector sizes of the current audio driver and
allows the current I/O vector size setting to be changed.

latency If supported by the audio driver, reports the input and output laten-
cies of the driver in samples.

numinputs Reports the number of input channels of the current audio driver.

numoutputs Reports the number of output channels of the current audio driver.

optimize Turns the optimization flag on or off. On the Macintosh, this is used
to control the use of Altivec (G4 processor) optimizations.

option Requires an additional argument specifying the option number
(starting at 1). If the current audio driver uses the numbered option,
reports the available choices for setting the value of the option.

optionname Requires an additional argument specifying the option number
(starting at 1). If the current audio driver uses the numbered option,
the name of the option is reported.

output Requires an additional argument specifying a logical channel num-
ber (used by the dac~ object) between 1 and 512. Lists the available
audio driver output channels and allows the current setting to be
changed.
237

adstatus Access audio driver
output channels
overdrive Controls the setting of overdrive mode (where the scheduler runs in a
high-priority interrupt).

sigvs Reports the available signal vector sizes and allows the current signal
vector size setting to be changed.

sr Reports the available sampling rates and allows the current sampling
rate setting to be changed.

switch Turns the DSP on or off.

takeover Controls the setting of scheduler in audio interrupt mode.

timecode If supported by the audio driver, reports the current timecode value.

Output
various Out left outlet: For many settings, a series of messages intended to set up a pop-up

menu object are sent out the left outlet when the reset or loadbang message is
received by adstatus. See the reset message in the Input section for more details.

The following settings have a menu-style output: driver, input, iovs, optimize, output,
sigvs, sr, switch, and takeover.

set Out left outlet: When a bang message is received or when the value of the setting
that has a menu-style output is changed, the word set, followed by a number with
a menu item index (starting at 0) is sent out. Here are details of outputs from the
left outlet for specific settings with menu-style outputs:

driver Lists all current audio driver choices.

input Lists audio input channels for the audio driver currently in use.

iovs Lists I/O vector sizes for the audio driver currently in use.

optimize Creates an On/Off menu for use with this setting.

option Creates a list of choices for the specified option.

optionname Sets a menu that names the specified option. Intended for use with a
pop-up menu object in label mode.

output Lists audio output channels for the audio driver currently in use.

overdrive Creates an On/Off menu for use with this setting.

sigvs Lists signal vector sizes for the audio driver currently in use.
 238

adstatus Access audio driver
output channels
sr Lists sampling rates available for the audio driver currently in use.

switch Creates an On/Off menu for turning the DSP on and off.

takeover Creates an On/Off menu for switching scheduler in audio interrupt
mode.

int or float Out left outlet: For objects that don't use a menu-style output, the current value of
the setting is sent out the left outlet. Here are details for specific settings:

cpu Reports CPU utilization as a percentage (normally from 0 to 100).

cpulimit Reports the current CPU utilization limit.

info Reports the number of function calls used in the top-level DSP chain.

latency If supported by the audio driver, reports the input latency of the
audio driver.

numinputs Reports the number of inputs in the current audio driver.

numoutputs Reports the number of outputs in the current audio driver.

timecode If supported by the audio driver, reports the current timecode as a list
in the following format:

 1. time code sample count most significant word
2. time code sample count least significant word
3. time code subframes
4. time code flags
5. time code frame rate

int or float Out right outlet: Here are the objects that output something out the value outlet of
the object:

info Reports the number of signals used in the top-level DSP chain.

iovs Reports the current I/O vector size.

sigvs Reports the current signal vector size.

option Reports the menu item index of the option's current value.

switch Reports the current on/off setting of the DSP.

takeover Reports the current on/off setting of takeover mode.

input Reports the current input channel for the specified logical channel.
239

adstatus Access audio driver
output channels
output Reports the current output channel for the specified logical channel.

overdrive Reports the current on/off setting of overdrive mode.

sr Reports the current sampling rate.

numinputs Reports the number of inputs in the current audio driver (same as left
outlet).

numoutputs Reports the number of outputs in the current audio driver (same as
left outlet).

overdrive Reports the current on/off setting of overdrive mode.

Examples

adstatus lets you monitor and change audio parameters from within your patch.

See Also

dspstate~ Report current DSP setting
adoutput~ Access audio driver output channels
Audio I/O Audio input and output with MSP
 240

allpass~ Allpass filter
Input
signal In left inlet: Any signal to be filtered. The filter mixes the current input sample

with an earlier output sample, according to the formula:

yn = -gxn + xn-(DR/1000) +gyn-(DR/1000)

where R is the sampling rate and D is a delay time in milliseconds.

In middle inlet: Delay time (D) in milliseconds for a past output sample to be
added into the current output.

In right inlet: Gain coefficient (g), for scaling the amount of the input and output
samples to be sent to the output.

float or int The filter parameters in the middle and right inlets may be specified by a float or int
instead of a signal. If a signal is also connected to the inlet, the float or int is
ignored.

clear Clears the allpass~ object’s memory of previous outputs, resetting them to 0.

Arguments
float Optional. Up to four numbers, to set the maximum delay time and initial values

for the delay time D and gain coefficient g. If a signal is connected to a given inlet,
the coefficient supplied as an argument for that inlet is ignored. If no arguments
are present, the maximum delay time defaults to 10 milliseconds.

Output
signal The filtered signal.

Examples

Short delay with feedback to blur the input sound, or longer delay for discrete echoes
241

allpass~ Allpass filter
See Also

biquad~ Two-pole two-zero filter
comb~ Comb filter
lores~ Resonant lowpass filter
reson~ Resonant bandpass filter
teeth~ Comb filter with feedforward and feedback delay control
 242

asin~ Signal
arc-sine function

243

Input
signal Input to a arc-sine function.

Arguments
None.

Output
signal The arc-sine of the input in radians.

Examples

asin~ lets you create linear ramps in radians in the range -π/2—π/2

See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function

 244

asinh~ Signal hyperbolic
arc-sine function

Input
signal Input to a hyperbolic arc-sine function.

Arguments
None.

Output
signal The hyperbolic arc-sine of the input in radians.

Examples

See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function

atan~ Signal
arc-tangent function

245

Input
signal Input to a arc-tangent function.

Arguments
None.

Output
signal The arc-tangent of the input.

Examples

atan~ performs the arctangent function on a signal

See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function

 246

atanh~ Signal hyperbolic
arc-tangent function

Input
signal Input to a hyperbolic arc-tangent function.

Arguments
None.

Output
signal The hyperbolic arc-tangent of the input.

Examples

See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function

atan2~ Signal arc-tangent
function (two variables)
Input
signal In left input: x value input to an arc-tangent function.

In right input: y value input to an arc-tangent function.

Arguments
None.

Output
signal The arc-tangent input values (i.e. Arc-tangent(y/x)).

Examples

atan2~ Calculate the angle of two points around an origin (0, 0), in radians
247

atan2~ Signal arc-tangent
function (two variables)
See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function
 248

average~ Multi-mode
signal average

249

Input
signal The signal to be averaged.

int Sets the interval in samples used for each of the three modes of signal averaging.
The default value is 100.

bipolar Sets bipolar averaging mode (default). In bipolar mode, the sample values are
averaged.

absolute Sets absolute averaging mode. This mode averages the absolute value of the
incoming samples.

rms Sets root mean square (RMS) averaging mode. This mode computes the square
root of the average of the sample values squared.

The RMS mode of the average~ object is more CPU-intensive than the bipolar
and absolute modes.While RMS values are often used to measure signal levels,
the absolute mode often works as well as the RMS mode in many level-detection
tasks.

Arguments
int Optional. Sets the maximum averaging interval in samples. The default value is

100.

symbol Optional. Sets the averaging mode, as defined above. The default is bipolar.

Output
float The running average value of the input signal averaged over the specified number

of samples.

Examples

Running average of a signal across n samples

See Also

avg~ Signal average
meter~ Visual peak level indicator

 250

avg~ Signal average

Input
bang Triggers a report of the average (absolute) amplitude of the signal received since

the previous bang, and clears the avg~ object’s memory in preparation for the next
report.

signal The signal to be averaged.

Arguments
None.

Output
float When bang is received in the inlet, avg~ reports the average amplitude of the signal

received since the previous bang.

Examples

Report the average (absolute) amplitude of a signal

See Also

average~ Multi-mode signal average
avg~ Signal average
meter~ Visual peak level indicator

begin~ Define a switchable part
of a signal network

251

Input
None.

Arguments
None.

Output
signal begin~ outputs a constant signal of 0. It is used to designate the beginning of a

portion of a signal network that you wish to be turned off when it’s not needed.
You connect the outlet of begin~ to the signal inlet of another object to define the
beginning of a signal network that will eventually pass through a gate~ or selec-
tor~. One begin~ can be used for each gate~ or selector~ signal inlet. When the
signal coming into gate~ or selector~ is shut off, no processing occurs in any of
the objects in the signal network between the begin~ and the gate~ or selector~.

Examples

See Also

selector~ Assign one of several inputs to an outlet
gate~ Route a signal to one of several outlets
Tutorial 5 Fundamentals: Turning signals on and off

biquad~ Two-pole,
two-zero filter
Input
signal In left inlet: Signal to be filtered. The filter mixes the current input sample with the

two previous input samples and the two previous output samples according to the
formula: yn = a0xn + a1xn-1 + a2xn-2 - b1yn-1 - b2yn-2.

In 2nd inlet: Amplitude coefficient a0, for scaling the amount of the current input

to be passed directly to the output.

In 3rd inlet: Amplitude coefficient a1, for scaling the amount of the previous input

sample to be added to the output.

In 4th inlet: Amplitude coefficient a2, for scaling the amount of input sample n-2

to be added to the output.

In 5th inlet: Amplitude coefficient b1, for scaling the amount of the previous out-

put sample to be added to the current output.

In right inlet: Amplitude coefficient b2, for scaling the amount of output sample n-

2 to be added to the current output.

float The coefficients in inlets 2 to 6 may be specified by a float instead of a signal. If a
signal is also connected to the inlet, the float is ignored.

list The five coefficients can be provided as a list in the left inlet. The first number in
the list is coefficient a0, the next is a1, and so on. If a signal is connected to a given

inlet, the coefficient supplied in the list for that inlet is ignored.

clear Clears the biquad~ object’s memory of previous inputs and outputs, resetting xn-1,

xn-2, yn-1, and yn-2 to 0.

Arguments
float Optional. Up to five numbers, to set initial values for the coefficients a0, a1, a2, b1,

and b2. If a signal is connected to a given inlet, the coefficient supplied as an argu-

ment for that inlet is ignored.

Output
signal The filtered signal.
 252

biquad~ Two-pole,
two-zero filter
Examples

Filter coefficients may be supplied as numerical values or as varying signals

See Also

buffir~ Buffer-based FIR filter
comb~ Comb filter
filtergraph~ Graphical filter editor
lores~ Resonant lowpass filter
onepole~ Single-pole lowpass filter
reson~ Resonant bandpass filter
teeth~ Comb filter with feedforward and feedback delay control
253

bitand~ Bitwise and
of floating point signals
The bitand~ object performs a bitwise intersection (a bitwise “and”) on two incoming floating-
point signals as either raw 32-bit data or as integer values. The output is a floating-point signal
composed of those bits which are 1 in both numbers.

Input
signal In left inlet: The floating-point signal is compared, in binary form, with the float-

ing-point signal in the right inlet. The signal can be treated as either a floating-
point signal or as an integer.

In right inlet: The floating-point signal to be compared with the signal in the left
inlet. The signal can be treated as either a floating-point signal or as an integer.

The raw floating-point signal bit values are expressed in the following form:

<1 sign bit> <8 exponent bits> <23 mantissa bits>

int In right inlet: An integer value can be used as a bitmask when supplied to the right
inlet of the bitand~ object, provided that the proper mode is set.

bits In left inlet: The word bits, followed by a list containing 32 ones or zeros, specifies
a bitmask to be used by bitand~. Alternately, a bitmask value can be set by using
an int value in the right inlet.

mode In left inlet: The word mode, followed by a zero or one, specifies whether the float-
ing signal or floating-point values will be processed as a raw 32-bit floating-point
value or converted to an integer value for the bitwise operation. The modes of
operation are:

Mode Description
0 Treat both floating-point signal inputs as raw 32-bit values (default).
1 Convert both floating-point signal inputs to integer values.
2 Treat the floating-point signal in the left inlet as a raw 32-bit value and

treat the value in the right inlet as an integer.
3 Convert the floating-point signal in the left inlet to an integer and treat

the right input as a raw 32-bit value.

Note: If you convert the floating-point signal input to an int and then convert it
back, the resulting floating-point value will retain only 24 bits of integer resolu-
tion.

Arguments
int Optional. Sets the bitmask to be used by the bitand~ object. The default is 0. An

integer value can be used as a bitmask regardless of the mode; the binary repre-
sentation of this integer is the bitmask.
 254

bitand~ Bitwise and
of floating point signals
int Optional. Specifies whether the floating-point signal or floating-point values will
be processed as raw 32-bit floating-point values or converted to integer values for
the bitwise operation. The modes of operation are:

Mode Description
0 Treat both floating-point signal inputs as raw 32-bit values (default).
1 Convert both floating-point signal inputs to integer values.
2 Treat the floating-point signal in the left inlet as a raw 32-bit value and the

value in the right inlet as an integer.
3 Convert the floating-point signal in the left inlet to an integer and treat

the right input as a raw 32-bit value.

Output

signal The two floating-point signals or ints received in the inlets are compared, one bit
at a time. If a bit is 1 in both numbers, it will be 1 in the output number, otherwise
it will be 0 in the output floating-point signal.

Examples

See Also

bitshift~ Bitwise shifting of a floating-point signal
bitor~ Bitwise “or” of floating-point signals
bitxor~ Bitwise “exclusive or” of floating-point signals
bitnot~ Bitwise inversion of a floating-point signal
255

bitnot~ Bitwise inversion
of a floating point signal
The bitnot~ object performs a bitwise inversion on an incoming floating-point signal as either raw
32-bit data or as an integer value. All bit values of 1 are set to 0, and vice versa.

Input
signal The bitnot~ object can perform bit inversion on either a floating-point signal as

bits, or as an integer.

Floating-point signal bit values are expressed in the following form:

<1 sign bit> <8 exponent bits> <23 mantissa bits>

mode In left inlet: The word mode, followed by a zero or one, specifies whether the float-
ing signal or floating-point value will be processed as a raw 32-bit floating-point
value or converted to an integer value for bit inversion. The modes of operation
are:

Mode Description
0 Treat floating-point signal input as a raw 32-bit value (default).
1 Convert the floating-point signal input to an integer value.

Note: If you convert the floating-point signal input to an int and then convert it
back, the resulting floating-point value will retain only 24 bits of integer resolu-
tion.

Arguments
int Optional. Specifies whether the floating-point signal or floating-point value will

be processed as a raw 32-bit floating-point value or converted to an integer value
for bit inversion. The modes of operation are:

Mode Description
0 Treat floating-point signal input as a raw 32-bit value (default).
1 Convert the floating-point signal input to an integer value.

Output

signal The resulting bit inverted floating-point signal.
 256

bitnot~ Bitwise inversion
of a floating point signal
Examples

See Also

bitshift~ Bitwise shifting of a floating-point signal
bitor~ Bitwise “or” of floating-point signals
bitxor~ Bitwise “exclusive or” of floating-point signals
bitand~ Bitwise “and” of floating-point signals
257

bitor~ Bitwise or
of floating point signals
The bitor~ object performs a bitwise “or” on two incoming floating-point signals as either raw 32-
bit data or as integer values. The bits of both incoming signals are compared, and a 1 is output if
either of the two bit values is 1. The output is a floating-point signal composed of the resulting bit
pattern.

Input
signal In left inlet: The floating-point signal is compared, in binary form, with the float-

ing-point signal in the right inlet. The signal can be treated as either a floating-
point signal or as an integer.

In right inlet: The floating-point signal to be compared with the signal in the left
inlet. The signal can be treated as either a floating-point signal or as an integer.

The raw floating-point signal bit values are expressed in the following form:

<1 sign bit> <8 exponent bits> <23 mantissa bits>

int In right inlet: An integer value can be used as a bitmask when supplied to the right
inlet of the bitor~ object, provided that the proper mode is set.

bits In left inlet: The word bits, followed by a list containing 32 ones or zeros, specifies
a bitmask to be used by bitor~. Alternately, a bitmask value can be set by using an
int value in the right inlet.

mode In left inlet: The word mode, followed by a zero or one, specifies whether the float-
ing signal or floating-point values will be processed as raw 32-bit floating-point
values or converted to integer values for the bitwise operation. The modes of
operation are:

Mode Description
0 Treat both floating-point signal inputs as raw 32-bit values (default).
1 Convert both floating-point signal inputs to integer values.
2 Treat the floating-point signal in the left inlet as a raw 32-bit value and the

value in the right inlet as an integer.
3 Convert the floating-point signal in the left inlet to an integer and treat

the right input as a raw 32-bit value.

Note: If you convert the floating-point signal input to an int and then convert it
back, the resulting floating-point value will retain only 24 bits of integer resolu-
tion.

Arguments
int Optional. Sets the bitmask to be used by the bitor~ object. The default is 0. An

integer value can be used as a bitmask regardless of the mode; the binary repre-
sentation of this integer is the bitmask.
 258

bitor~ Bitwise or
of floating point signals
int Optional. Specifies whether the floating-point signal or floating-point values will
be processed as raw 32-bit floating-point values or converted to integer values for
the bitwise operation. The modes of operation are:

Mode Description
0 Treat both floating-point signal inputs as raw 32-bit values (default).
1 Convert both floating-point signal inputs to integer values.
2 Treat the floating-point signal in the left inlet as a raw 32-bit value and the

value in the right inlet as an integer.
3 Convert the floating-point signal in the left inlet to an integer and treat

the right input as a raw 32-bit value.

Output

signal The two floating-point signals or ints received in the inlets are compared, one bit
at a time. If a bit is 1 in either one of the numbers, it will be 1 in the output number,
otherwise it will be 0 in the output number. The output is a floating-point signal
composed of the resulting bit pattern.

Examples

See Also

bitshift~ Bitwise shifting of a floating-point signal
bitand~ Bitwise “and” of floating-point signals
bitxor~ Bitwise “exclusive or” of floating-point signals
bitnot~ Bitwise inversion of a floating-point signal
259

bitshift~ Bit shifting
for floating point signals
Input
signal The bitshift~ object performs bit shifting on a floating-point signal as either raw

32-bit data or as an integer value.

floating-point signal bit values are expressed in the following form:
<1 sign bit> <8 exponent bits> <23 mantissa bits>

mode In left inlet: The word mode, followed by a zero or one, specifies whether the float-
ing signal or floating-point value will be processed as a raw 32-bit floating-point
value or converted to an integer value for bit shifting. The modes of operation are:

Mode Description
0 Treat floating-point signal input as a raw 32-bit value (default).

1 Convert the floating-point signal input to an integer value.

Note: If you convert the floating-point signal input to an int and then convert it
back, the resulting floating-point value will retain only 24 bits of integer resolu-
tion.

shift In left inlet: The word shift, followed by a positive or negative number, specifies the
number of bits to be shifted on the incoming floating-point signal. Positive num-
ber values correspond to left shifting that number of bits (i.e., Left shifting a num-

ber n places is the same as dividing it by 2n). Negative numbers correspond to
right shifting that number of bits (i.e., Right shifting a number n places is the

same as dividing it by 2n).

Arguments
int Optional. Sets the number of bits to be shifted on the incoming floating-point

signal. Positive shift values correspond to left shifting that number of bits, nega-
tive shift values correspond to right shifting that number of bits.

int Optional. Specifies whether the floating signal or floating-point value will be pro-
cessed as a raw 32-bit floating-point value or converted to an integer value for bit
shifting. The modes of operation are:
Mode Description
0 Treat floating-point signal input as a raw 32-bit value (default).
1 Convert the floating-point signal input to an integer value.

Output
signal The resulting bit shifted floating-point signal.
 260

bitshift~ Bit shifting
for floating point signals
Examples

See Also

bitand~ Bitwise “and” of floating-point signals
bitor~ Bitwise “or” of floating-point signals
bitxor~ Bitwise “exclusive or” of floating-point signals
bitnot~ Bitwise inversion of a floating-point signal
261

bitxor~ Bitwise exclusive or
of floating point signals
The bitxor~ object performs a bitwise “exclusive or” on two incoming floating-point signals as
either raw 32-bit data or as integer values. The bits of both incoming signals are compared, and the
corresponding output bit will be set to 1 if the two bit values are different, and 0 if the two values
are the same. The output is a floating-point signal composed of the resulting bit pattern.

Input
signal In left inlet: The floating-point signal is compared, in binary form, with the float-

ing-point signal in the right inlet. The signal can be treated as either a floating-
point signal or as an integer.

In right inlet: The floating-point signal to be compared with the signal in the left
inlet. The signal can be treated as either a floating-point signal or as an integer.

The raw floating-point signal bit values are expressed in the following form:

<1 sign bit> <8 exponent bits> <23 mantissa bits>

int In right inlet: An integer value can be used as a bitmask when supplied to the right
inlet of the bitxor~ object, provided that the proper mode is set.

bits In left inlet: The word bits, followed by a list containing 32 ones or zeros, specifies
a bitmask to be used by bitxor~. Alternately, a bitmask value can be set by using an
int value in the right inlet.

mode In left inlet: The word mode, followed by a zero or one, specifies whether the float-
ing signal or floating-point values will be processed as raw 32-bit floating-point
values or converted to integer values for the bitwise operation. The modes of
operation are:

Mode Description
0 Treat both floating-point signal inputs as raw 32-bit values (default).
1 Convert both floating-point signal inputs to integer values.
2 Treat the floating-point signal in the left inlet as a raw 32-bit value and

treat the value in the right inlet as an integer.
3 Convert the floating-point signal in the left inlet to an integer and treat

the right input as a raw 32-bit value.

Note: If you convert the floating-point signal input to an int and then convert it
back, the resulting floating-point value will retain only 24 bits of integer resolu-
tion.

Output
signal The two floating-point signals or ints received in the inlets are compared, one bit

at a time. A 1 is output if the two bit values are different, 0 if they are the same. The
output is a floating-point signal composed of the resulting bit pattern.
 262

bitxor~ Bitwise exclusive or
of floating point signals
Examples

See Also

bitshift~ Bitwise shifting of a floating-point signal
bitand~ Bitwise “and” of floating-point signals
bitor~ Bitwise “or” of floating-point signals
bitnot~ Bitwise inversion of a floating-point signal
263

buffer~ Store audio samples
Input
bang Redraws the contents of the buffer~ object’s waveform display window. You can

open the display window by double-clicking on the buffer~ object.

clear Erases the contents of buffer~.

clearlow Erases the contents of the buffer like the clear message, but performs the clear as a
low-priority task.

filetype The word filetype, followed by symbol which specifies an audio file format, sets the
file type used by the buffer~ object. The default file type is AIFF.Supported file
types are identified as follows:

aiff Apple Interchange File Format (default)
sd2 Sound Designer II (Macintosh only)
wave WAVE
raw raw
au NeXT/Sun

import The word import, followed by a filename, reads that file into buffer~ immediately if
it exists in Max’s search path without opening the Open Document dialog box.
Without a filename, import brings up an Open Document dialog box allowing
you to choose a file. The imported file retains the sampling rate and word size of
the original file, but looping points and markers are not imported. The filename
may be followed by a float indicating a starting time in the file, in milliseconds, to
begin reading. (The beginning of the file is 0.)

The buffer~ object uses QuickTime to convert a media file (including MP3 files)
into the sample memory of a buffer~, and requires that QuickTime be installed
on your system. If you are using Max on Windows, we recommend that you
install QuickTime and choose a complete install of all optional components.

Since the import message uses QuickTime, which specifies units of time for all files
as 1/600 of a second rather than milliseconds, importing is not guaranteed to
start at the specified offset with millisecond accuracy. The starting time may be
followed by a float duration, in milliseconds, of sound to be read into buffer~.
This duration overrides the current size of the object’s sample memory. If the
duration is negative, buffer~ reads in the entire file and resizes its sample memory
accordingly. If duration argument is zero or not present, the buffer~ object’s sam-
ple memory is not resized if the audio file is larger than the current sample mem-
ory size. The duration may be followed by a number of channels to be read in. If
the number of channels is not specified, buffer~ reads in the number of channels
indicated in the header of the audio file. Whether or not the number of channels is
specified in the read message, the previous number of channels in a buffer~ is
changed to the number of channels read from the file.
 264

buffer~ Store audio samples
name The word name, followed by a symbol, changes the name by which other objects
such as cycle~, groove~, lookup~, peek~, play~, record~, and wave~ can refer to
the buffer~. Objects that were referring to the buffer~ under its old name lose
their connection to it. Every buffer~ object should be given a unique name; if you
give a buffer~ object a name that already belongs to another buffer~, that name
will no longer be associated with the buffer~ that first had it.

open Opens the buffer~ sample display window or brings it to the front if it is already
open.

read Reads an AIFF, Next/Sun, WAV file, or Sound Designer II file (Macintosh only)
into the sample memory of the buffer~. The word read, followed by a filename,
reads that file into buffer~ immediately if it exists in Max’s search path without
opening the Open Document dialog box. Without a filename, read brings up a
standard Open Document dialog box allowing you to choose a file. The filename
may be followed by a float indicating a starting time in the file, in milliseconds, to
begin reading. (The beginning of the file is 0.) The starting time may be followed
by a float duration, in milliseconds, of sound to be read into buffer~. This dura-
tion overrides the current size of the object’s sample memory. If the duration is
negative, buffer~ reads in the entire file and resizes its sample memory accord-
ingly. If duration argument is zero or not present, the buffer~ object’s sample
memory is not resized if the audio file is larger than the current sample memory
size. The duration may be followed by a number of channels to be read in. If the
number of channels is not specified, buffer~ reads in the number of channels
indicated in the header of the audio file. Whether or not the number of channels is
specified in the read message, the previous number of channels in a buffer~ is
changed to the number of channels read from the file.

readagain Reads sound data from the most recently loaded file (specified in a previous read
or replace message).

replace Same as the read message with a negative duration argument. replace, followed by a
symbol, treats the symbol as a filename located in Max’s file search path. If no
argument is present, buffer~ opens a standard open file dialog showing available
audio files. Additional arguments specify starting time, duration, and number of
channels as with the read message.

samptype In left inlet: The word samptype, followed by a symbol, specifies the sample type to
use when interpreting an audio file’s sample data (thus overriding the audio file's
actual sample type). This is sometimes called “header munging.”

The following types of sample data are supported:

int8 8-bit integer
int16 16-bit integer
int24 24-bit integer
int32 32-bit integer
265

buffer~ Store audio samples
float32 32-bit floating-point
float64 64-bit floating-point
mulaw 8-bit µ-law encoding
alaw 8-bit a-law encoding

set The word set, followed by a symbol, changes the name by which other objects such
as cycle~, groove~, lookup~, peek~, play~, record~, and wave~ can refer to the
buffer~. Objects that were referring to the buffer~ under its old name lose their
connection to it. Every buffer~ object should be given a unique name; if you give a
buffer~ object a name that already belongs to another buffer~, that name will no
longer be associated with the buffer~ that first had it.

size The word size, followed by a duration in milliseconds, sets the size of the buffer~
object’s sample memory. This limits the amount of data that can be stored, unless
this size limitation is overridden by a replace message or a duration argument in a
read message.

sr The word sr, followed by a sampling rate, sets the buffer~ object’s sampling rate.
By default, the sampling rate is the current output sampling rate, or the sampling
rate of the most recently loaded audio file.

wclose Closes the buffer~ sample display window if it is open.

write Saves the contents of buffer~ into an audio file. A standard file dialog is opened for
naming the file unless the word write is followed by a symbol, in which case the file
is saved in the current default folder, using the symbol as the filename. Unless you
change the format with the Format pop-up menu in the standard Save As dialog
box, the file will be saved in the format specified by the most recently received file-
type message, or the file type of the most recently opened audio file. By default,
buffer~ saves in AIFF format.

writeaiff Saves the contents of the buffer~ as an AIFF file. A standard Save As dialog is
opened for naming the file unless the word writeaiff is followed by a symbol, in
which case the file is saved in the current default folder, using the symbol as the
filename.

writeau Saves the contents of the buffer~ as a NeXT/Sun file. A standard Save As dialog is
opened for naming the file unless the word writeau is followed by a symbol, in
which case the file is saved in the current default folder, using the symbol as the
filename.

writeraw Saves the contents of the buffer~ as a raw file with no header. The default sample
format is 16-bit, but the output sample format can be set with the samptype mes-
sage. A standard Save As dialog is opened for naming the file unless the word writ-
eraw is followed by a symbol, in which case the file is saved in the current default
folder, using the symbol as the filename.
 266

buffer~ Store audio samples
writesd2 (Macintosh only) Saves the contents of the buffer~ into a Sound Designer II file. A
standard Save As dialog is opened for naming the file unless the word writesd2 is
followed by a symbol, in which case the file is saved in the current default folder,
using the symbol as the filename.

writewave Saves the contents of the buffer~ into a WAV file. A standard Save As dialog is
opened for naming the file unless the word writewave is followed by a symbol, in
which case the file is saved in the current default folder, using the symbol as the
filename.

(remote) The contents of buffer~ can be altered by the peek~ and record~ objects.

(mouse) Double-clicking on buffer~ opens an display window where you can view the
contents of the buffer~.

Arguments
symbol Obligatory. The first argument is a name used by other objects to refer to the

buffer~ to access its contents.

symbol Optional. After the buffer~ object’s name, you may type the name of an audio file
to load when the buffer~ is created.

float or int Optional. After the optional filename argument, a duration may be provided, in
milliseconds, to set the size of the buffer~, which limits the amount of sound that
will be stored in it. (A new duration can be specified as part of a read message,
however.) If no duration is typed in, the buffer~ has no sample memory. It does
not, however, limit the size of an audio file that can be read in.

int Optional. After the duration, an additional argument may be typed in to specify
the number of audio channels to be stored in the buffer~. (This is to tell buffer~
how much memory to allocate initially; however, if an audio file with more chan-
nels is read in, buffer~ will allocate more memory for the additional channels.)
The maximum number of channels buffer~ can hold is four. By default, buffer~
has one channel.

Output
float When the user clicks or drags with the mouse in the buffer~ object’s editing win-

dow, the cursor’s time location in the buffer~, in milliseconds, is sent out the out-
let.
267

buffer~ Store audio samples
Examples

buffer~ can be used as a waveform table for an oscillator, or as a sample buffer

See Also

2d.wave~ Two-dimensional wavetable
buffir~ Buffer-based FIR filter
cycle~ Table lookup oscillator
groove~ Variable-rate looping sample playback
lookup~ Transfer function lookup table
peek~ Read and write sample values
play~ Position-based sample playback
record~ Record sound into a buffer
sfplay~ Play audio file from disk
sfrecord~ Record to audio file on disk
wave~ Variable-size wavetable
Tutorial 3 Fundamentals: Wavetable oscillator
Tutorial 12 Synthesis: Waveshaping
Tutorial 13 Sampling: Recording and playback
 268

buffir~ buffer~-based
FIR filter
The buffir~ object implements a finite impulse response (FIR) filter that performs the convolution
of an input signal and a set of coefficients which are derived from the samples stored in a buffer~
object (referred to below as the filter buffer~) using the following equation:

Input
signal In left inlet: The signal to be convolved with samples from the buffer~.

In middle inlet: The offset (in samples) into the filter buffer~ from which the
buffir~ object begins to read.

In right inlet: The size of the slice from the filter buffer~ which is used to filter the
input signal, in samples. The maximum is 256.

int or float In middle inlet: The offset into the filter buffer~ from which buffir~ begins to
read, in samples.

In right inlet: The size (in samples) of the slice from the filter buffer~ which is
used to filter the input signal (the maximum is 256).

clear The word clear erases (zeroes) the current input history for the filter.

set The word set, followed by the name of a buffer~ object, an int which specifies
sample offset, and an optional int which specifies a number of channels, specifies
the name of a buffer~ object which buffir~ uses to filter its input signal.

Arguments
symbol Obligatory. The name of a buffer~ object which buffir~ uses to filter the input sig-

nal.

int or float Optional. The offset, in samples, into the buffer~ object before buffir~ begins
reading samples to construct the filter. The default is 0.

int or float Optional. The size, in samples, of the slice in the buffer~ which buffir~ will use for
the filter. The default is 0.
269

buffir~ buffer~-based
FIR filter
Output
signal The filtered signal, based on a convolution of the input signal with samples in the

buffer~.

Examples

buffir~ lets you use slices of a buffer~ as an impulse response for an FIR filter

See Also

biquad~ Two-pole, two-zero filter
buffer~ Store audio samples
 270

capture~ Store a signal
to view as text
Input
signal An excerpt of the signal is stored as text for viewing, editing, or saving to a file.

(The length of the excerpt can be specified as a typed-in argument to the object.)

write Saves the contents of capture~ into a text file. A standard file dialog is opened for
naming the file. The word write, followed by a symbol, saves the file, using the
symbol as the filename, in the same folder as the patch containing the capture~. If
the patch has not yet been saved, the capture~ file is saved in the same folder as the
Max application.

clear Erases the contents of capture~.

open Causes an editing and viewing window for the capture~ object to become visible.
The window is also brought to the front.

wclose Closes the window associated with the capture~ object.

(mouse) Double-clicking on capture~ opens a window for viewing and editing its con-
tents. The numbers in the editing window can be copied and pasted into a
graphic buffer~ editing window.

Arguments
f Optional. If the first argument is the letter f, capture~ stores the first signal sam-

ples it receives, and then ignores subsequent samples once its storage buffer is full.
If the letter f is not present, capture~ stores the most recent signal samples it has
received, discarding earlier samples if necessary.

int Optional. Limits the number of samples (and thus the length of the excerpt) that
can be held by capture~. If no number is typed in, capture~ stores 4096 samples.
The maximum possible number of samples is limited only by the amount of
memory available to the Max application. A second number argument may be
typed in to set the precision (the number of digits to the right of the decimal
point) with which samples will be shown in the editing window.

Output
None.
271

capture~ Store a signal
to view as text
Examples

Capture a portion of a signal as text, to view, save, copy and paste, etc.

See Also

scope~ Signal oscilloscope
 272

cartopol~ Signal Cartesian to Polar
coordinate conversion
Input
signal In left inlet: The real part of a frequency domain signal (such as that created by the

fft~ or fftin~ objects) to be converted to a polar-coordinate signal pair consisting
of amplitude and phase values.

In right inlet: The imaginary part of a frequency domain signal (such as that cre-
ated by the fft~ or fftin~ objects) to be converted to a polar-coordinate signal pair
consisting of amplitude and phase values.

Arguments
None.

Output
signal Out left outlet: The magnitude (amplitude) of the frequency bin represented by

the current input signals.

Out right outlet: The phase, expressed in radians, of the frequency bin repre-
sented by the current input signals. If only the left outlet is connected the phase
computation will be bypassed, reducing the intensity of the computation.

Examples

Use cartopol~ to get amplitude/phase data from the real/imaginary data pair that fftin~ outputs
273

cartopol~ Signal Cartesian to Polar
coordinate conversion
See Also

cartopol Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 26 Frequency Domain Signal Processing with pfft~
 274

change~ Report signal direction

275

Input
signal Any signal.

Arguments
None.

Output
signal When the current sample is greater in value than the previous sample, change~

outputs a sample of 1. When the current sample is the same as the previous sam-
ple, change~ outputs a sample of 0. When the current sample is less than the pre-
vious sample, change~ outputs a sample of -1.

Examples

Detect whether a signal is increasing, decreasing, or remaining constant

See Also

edge~ Detect logical signal transitions
thresh~ Detect signal above a set value
zerox~ Zero-cross counter and transient detector

 276

click~ Create an
impulse

Input
bang Sends an impulse out the click~ object’s outlet. The default impulse consists of a

single value (1.0), followed by a zero value.

set The word set, followed by a list of floating-point values in the range 0.0-1.0, speci-
fies a impulse (i.e., a small wavetable) whose length is determined by the number
of list elements. The maximum size for the list is 256 items.

Arguments
list Optional. A list can be used to define the contents of a wavetable used for the

impulse (see the set message). The maximum number of arguments is 256.

Output
signal An impulse.

Examples

Trigger an impulse signal

See Also

buffer~ Store a sound sample
buffir~ buffer-based FIR filter
line~ Linear ramp generator

clip~ Limit signal amplitude

277

Input
signal In left inlet: Any signal, which will be restricted within the minimum and maxi-

mum limits received in the middle and right inlets.

In middle inlet: Minimum limit for the range of the output signal.

In right inlet: Maximum limit for the range of the output signal.

float or int The middle and right inlets can receive a float or int instead of a signal to set the
minimum and/or maximum.

Arguments
float Optional. Initial minimum and maximum limits for the range of the output sig-

nal. If no argument is supplied, the minimum and maximum limits are both ini-
tially set to 0. If a signal is connected to the middle or right inlet, the
corresponding argument is ignored.

Output
signal The input signal is sent out, limited within the specified range. Any value in the

input signal that exceeds the minimum or maximum limit is set equal to that
limit.

Examples

Output is a clipped version of the input

See Also

<~ Is less than, comparison of two signals
>~ Is greater than, comparison of two signals
trunc~ Truncate fractional signal values

comb~ Comb filter
Input
signal In left inlet: Signal to be filtered. The filter mixes the current input sample with

earlier input and/or output samples, according to the formula:

yn = axn + bxn-(DR/1000) + cyn-(DR/1000)

where R is the sampling rate and D is a delay time in milliseconds.

In 2nd inlet: Delay time (D) in milliseconds for a past sample to be added into the
current output.

In 3rd inlet: Amplitude coefficient (a), for scaling the amount of the input sample
to be sent to the output.

In 4th inlet: Amplitude coefficient (b), for scaling the amount of the delayed past
input sample to be added to the output.

In right inlet: Amplitude coefficient (c), for scaling the amount of the delayed past
output sample to be added to the output.

float or int The filter parameters in inlets 2 to 5 may be specified by a float instead of a signal.
If a signal is also connected to the inlet, the float is ignored.

list The three parameters can be provided as a list in the left inlet. The first number in
the list is the delay time D, the next number is coefficient a, and the third number
is coefficient b. If a signal is connected to a given inlet, the coefficient supplied in
the list for that inlet is ignored.

clear Clears the comb~ object’s memory of previous outputs, resetting them to 0.

Arguments
float Optional. Up to five numbers, to set the maximum delay time and initial values

for the delay time D and coefficients a, b, and c. If a signal is connected to a given
inlet, the coefficient supplied as an argument for that inlet is ignored. If no argu-
ments are present, the maximum delay time defaults to 10 milliseconds, and all
other values default to 0.

Output
signal The filtered signal.
 278

comb~ Comb filter
Examples

Filter parameters may be supplied as float values or as signals

See Also

allpass~ Allpass filter
delay~ Delay line specified in samples
reson~ Resonant bandpass filter
teeth~ Comb filter with feedforward and feedback delay control
279

cos~ Signal
cosine function (0-1 range)
Input
signal Input to a cosine function. The input is stated as a fraction of a cycle (typically in

the range from 0 to 1), and is multiplied by 2π before being used in the cosine
function.

Arguments
None.

Output
signal The cosine of 2π times the input. The method used in this object to calculate the

cosine directly is typically less efficient than using the stored cosine in a cycle~
object.

Examples

Cosine of the input (a fraction of a cycle) is calculated and sent out
 280

cos~ Signal
cosine function (0-1 range)
See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
cycle~ Table lookup oscillator
phasor~ Sawtooth wave generator
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function
trapezoid~ Trapezoidal wavetable
triangle~ Triangle/ramp wavetable
wave~ Variable-size wavetable
2d.wave~ Two-dimensional wavetable
281

cosh~ Signal hyperbolic
cosine function
Input
signal Input to a hyperbolic cosine function.

Arguments
None.

Output
signal The hyperbolic cosine of the input.

Examples

Exciting nautical motif audio control signals call for the cosh~ object
 282

cosh~ Signal hyperbolic
cosine function
See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function
283

cosx~ Signal
cosine function
Input
signal Output from a cosine function. Unlike the cos~ object, whose output is based

around 1 and intended for use as a lookup table with the phasor~ object, the cosx~
object is a true π-based function.

Arguments
None.

Output
signal The cosine of the input.

Examples

cosx~ can make your audio control signals less jumpy and more bumpy
 284

cosx~ Signal
cosine function
See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function
285

count~ Signal sample counter
Input
bang If the audio is on, the output signal begins counting from its current minimum

value, increasing by one each sample. If the signal is already currently counting, it
resets to the minimum value and continues upward.

int In left inlet: Sets a new current minimum value, and the output signal begins
counting upward from this value.

In right inlet: Sets the maximum value. When the count reaches this value, it
starts over at the minimum value on the next sample. A value of 0 (the default)
eliminates the maximum, and the count continues increasing without resetting.

list In left inlet: A list consisting of four numbers can be used to specify the behavior
of the count~ object. The first and second numbers specify the minimum and
maximum values for the count, the third number specifies whether the count~
object is off (0) or on (1) initially, and the fourth number sets the autoreset flag
(see the autoreset message below).

float In any inlet: Converted to int.

autoreset In left inlet: The word autoreset, followed by a nonzero number, resets the counter
to the minimum value when audio is turned on.

min In left inlet: The word min, followed by a number, sets the count minimum on
next loop without immediately affecting output.

set In left inlet: The word set, followed by a number, sets the count minimum on the
next loop without immediately affecting output.

stop In left inlet: Causes count~ to output a signal with its current minimum value.

Arguments
int Optional. The first argument sets initial minimum value for the counter. The

default value is 0. The second argument sets the initial maximum value for the
counter, the default value is 0, which means there is no maximum value. The third
argument specifies whether the count~ object is off (0) or on (1) initially. The
fourth argument sets the autoreset state of the object (see the autoreset message
above).

Output
signal When the audio is first turned on, count~ always sends out its current minimum

value. When a bang or int is received, the count begins increasing from the current
minimum value.
 286

count~ Signal sample counter
Examples

Send out a running count of the passing samples, beginning at a given point

See Also

index~ Sample playback without interpolation
mstosamps~ Convert milliseconds to samples
sampstoms~ Convert samples to milliseconds
+=~ Signal accumulator
Tutorial 13 Sampling: Recording and playback
287

curve~ Exponential
ramp generator
Input
list The first number specifies a target value; the second number specifies an amount

of time, in milliseconds, to arrive at that value; and the optional third number
specifies a curve parameter, for which values from 0 to 1 produce an exponential
curve and values from -1 to 0 produce a logarithmic curve. The closer to 0 the
curve parameter is, the more the curve resembles a straight line, and the farther
away the parameter is from 0, the more the curve resembles a step. In the specified
amount of time, curve~ generates an exponential ramp signal from the currently
stored value to the target value.

curve~ accepts up to 42 target-time-parameter triples to generate a series of expo-
nential ramps. (For example, the message 0 1000 .5 1 1000 -.5 would go from the
current value to 0 in one second, then to 1 in one second.) Once one of the ramps
has reached its target value, the next one starts. A new list, float, or int in the left
inlet clears any ramps that have not yet generated.

float or int In left inlet: The number is the target value, to be arrived at in the time specified
by the number in the middle inlet. If no time has been specified since the last tar-
get value, the time is considered to be 0 and the output signal jumps immediately
to the target value.

In middle inlet: The time, in milliseconds, in which the output signal will arrive at
the target value.

In right inlet: The number is the curve parameter. Values from 0 to 1 produce an
exponential curve, and values from -1 to 0 produce a logarithmic curve. The
closer to 0 the number is, the more the curve resembles a straight line; the farther
away the number is from 0, the more the curve resembles a step.

Arguments
float or int Optional. The first argument sets an initial value for the signal output. The sec-

ond argument sets the initial curve parameter. The default values for the initial
signal output and curve parameter are 0.

Output
signal Out left outlet: The current target value, or an exponential curve moving toward

the target value according to the most recently received target value, transition
time, and curve parameter.

bang Out right outlet. When curve~ has finished generating all of its ramps, bang is sent
out.
 288

curve~ Exponential
ramp generator
Examples

Curved ramps used as control signals for frequency and amplitude

See Also

line~ Linear ramp generator
289

cycle~ Table lookup
oscillator
The cycle~ object is an interpolating oscillator that reads repeatedly through one cycle of a wave-
form, using a wavetable of 512 samples. Its default waveform is one cycle of a cosine wave. It can
use other waveforms by accessing samples from a buffer~ object. The 513th sample in the wavet-
able source (the buffer~) is used for interpolation beyond the 512th sample. For repeating waves,
it’s usually desirable for the 513th sample to be the same as the first sample, so there will be no dis-
continuity when the waveform wraps around from the end to the beginning. If only 512 samples
are available, cycle~ assumes a 513th sample equal to the 1st sample.This is the case for the cycle~
object’s default cosine waveform. If this is what you want for other waveforms, you should make
the 513th sample the same as the 512th sample, or omit the 513th sample.

Input
signal In left inlet: Frequency of the oscillator. Negative values are allowed.

In right inlet: Phase, expressed as a fraction of a cycle, from 0 to 1. Other values
are wrapped around to stay in the 0 to 1 range. If the frequency is 0, connecting a
phasor~ to this inlet is an alternative method of producing an oscillator. If the fre-
quency is non-zero, connecting a cycle~ or other repeating function to this inlet
produces phase modulation, which is similar to frequency modulation.

float or int In left inlet: Sets the frequency of the oscillator. If there is a signal connected to the
left inlet, this number is ignored.

In right inlet: Sets the phase (from 0 to 1) of the oscillator. Other values wrap
around to stay between 0 and 1. If the frequency remains fixed, cycle~ keeps track
of phase changes to keep the oscillator in sync with other cycle~ or phasor~
objects at the same frequency. If there is a signal connected to the right inlet, this
number is ignored.

set The word set, followed by the name of a buffer~ object, changes the wavetable
used by cycle~. The name can optionally be followed by an int specifying the sam-
ple offset into the named buffer~ object’s sample memory. cycle~ uses only the
first (left) channel of a multi-channel buffer~.

The word set with no arguments reverts cycle~ to the use of its default cosine wave.

Arguments
float or int Optional. The initial frequency of the oscillator. If no frequency argument is

present, the initial frequency is 0.

symbol Optional. The name of a buffer~ object used to store the oscillator’s wavetable. If a
float or int frequency argument is present, the buffer~ name follows the frequency.
(No frequency argument is required, however.) If no buffer~ name is given, cycle~
uses a stored cosine wave.
 290

cycle~ Table lookup
oscillator
int Optional. If a buffer~ name has been given, an additional final argument can used
to specify the sample offset into the named buffer~ object’s sample memory.
cycle~ only uses the first channel of a multi-channel buffer~.

Output
signal A waveform (cosine by default) repeating at the specified frequency, with the

specified phase.

Examples

Repeated cosine or any other waveform

See Also

buffer~ Store audio samples
buffir~ Buffer-based FIR filter
cos~ Cosine function
line~ Linear ramp generator
phasor~ Sawtooth wave generator
trapezoid~ Trapezoidal wavetable
triangle~ Triangle/ramp wavetable
wave~ Variable-size wavetable
2d.wave~ Two-dimensional wavetable
Tutorial 2 Fundamentals: Adjustable oscillator
Tutorial 3 Fundamentals: Wavetable oscillator
291

dac~ Audio output
and on/off
Input
signal A signal coming into an inlet of dac~ is sent to the audio output channel corre-

sponding to the inlet. The signal must be between -1 and 1 to avoid clipping by
the DAC.

open Opens the DSP Status window.

set In any inlet: The word set, followed by a number, sets the logical output channel
for the signal inlet in which the set message was received. For instance, sending set
3 to the left inlet of dac~ makes the signal coming in the left inlet to output to logi-
cal output channel 3.

Note that if the audio is on and you use the set message to change a dac~ to use
logical channels that are not currently in use, no sound will be heard from these
channels until the audio is turned off and on again. For example, if you have a
dac~ object with arguments 1 2 3 4 and signals are only connected to the two left-
most inlets (for channels 1 and 2), the message set 1 3 will not immediately route
the leftmost audio signal to logical channel 3, because it is not currently in use. A
method to get around this is to connect a sig~ 0 to each channel of a dac~ you plan
on using for a set message. At this point, you might as well use a matrix~ or switch~
object to do something similar before the audio signal reaches the dac~.

start Turns on audio processing in all loaded patches.

startwindow Turns on audio processing only in the patch in which this dac~ is located, and in
subpatches of that patch. Turns off audio processing in all other patches.

stop Turns off audio processing in all loaded patches.

wclose Closes the DSP Status window if it is open.

int A non-zero number is the same as start. 0 is the same as stop.

(mouse) Double-clicking on dac~ opens the DSP Status window.

Arguments
int Optional. You can create a dac~ object that uses one or more audio output chan-

nel numbers between 1 and 512. These numbers refer to logical channels and can
be dynamically reassigned to physical device channels of a particular driver using
either the DSP Status window, its I/O Mappings subwindow, or an adstatus object
with an output keyword argument.Arguments, If the computer’s built-in audio
hardware is being used, there will be two input channels available. Other audio
drivers and/or devices may have more than two channels. If no argument is typed
in, dac~ will have two inlets, for input channels 1 and 2.
 292

dac~ Audio output
and on/off
Output
None. The signal received in the inlet is sent to its assigned logical audio output
channel, which is mapped to a physical device output channel in the DSP Status
window.

Examples

Switch audio on and off, send signal to the audio outputs

See Also

adc~ Audio input and on/off
adstatus Access audio driver output channels
ezadc~ Audio on/off; analog-to-digital converter
ezdac~ Audio output and on/off button
Audio I/O Audio input and output with MSP
Tutorial 1 Fundamentals: Test tone
293

 294

degrade~ Signal quality
reducer

Input
signal In left inlet: The signal to be degraded.

float In middle inlet: The ratio of frequency at which the input signal is resampled,
effectively reducing its sampling rate. This ratio is the resampling rate divided by
the system sampling rate. For example, if MSP's current sampling rate is 44100
Hz, and the ratio is 0.75, the effective sampling rate of the output signal will be
33075 Hz.

int In right inlet: The number of bits used to quantize the input signal. This value
must be in the range 1-24. Fewer bits mean lower signal quality.

Arguments
float Optional. The first argument sets the resampling frequency ratio, as described

above. If this argument is not supplied, the default value is 1.0.

int Optional. The second argument sets the number of bits used to quantize the
input signal. If this argument is not supplied, the default value is 24.

Output
signal The output signal is the input signal after being resampled and quantized. Note

that this object deliberately does not use any interpolation when resampling, nor
any dithering when quantizing. It is intended for creating “low-fi” effects.

Note: Use caution when listening to the output of this object. Quantizing to a
small number of bits can create very loud, noisy signals.

Examples

Change a signal’s effective sampling rate and bit depth

See Also

downsamp~ Downsample a signal
round~ Round an input signal value

delay~ Delay line
specified in samples

295

Input
signal In left inlet: The signal to be delayed.

int In right inlet: The delay time in samples. The delay time cannot be less than 0 (no
delay) nor can it be greater than the maximum delay time set by the argument to
delay~.

Arguments
int Optional. The first argument sets the maximum delay in samples. This deter-

mines the amount of memory allocated for the delay line. The default value is 512.
The second argument sets the initial delay time in samples. The default value is 0.

Output
signal The output consists of the input delayed by the specified number of samples. The

differences between delay~ and tapin~/tapout~ are as follows: First, delay times
with delay~ are specified in terms of samples rather than milliseconds, so they
will change duration if the sampling rate changes. Second, the delay~ object can
reliably delay a signal a number of samples that is less than a vector size. Finally,
unlike tapin~ and tapout~, you cannot feed the output of delay~ back to its input.
If you wish to use feedback with short delays, consider using the comb~ object.

Examples

Delay signal for a specific number of samples, for echo or filtering effects

See Also

comb~ Comb filter
tapin~ Input to a delay line
tapout~ Output from a delay line

 296

delta~ Signal of
sample differences

Input
signal Any signal.

Arguments
None.

Output
signal The output consists of samples that are the difference between the current input

sample and the previous input sample. For example, if the input signal contained
1,.5,2,.5, the output would be 1,-.5,1.5,-1.5.

Examples

Report the difference between one sample and the previous sample

See Also

average~ Multi-mode signal average
avg~ Signal average

deltaclip~ Limit changes in
signal amplitude

297

deltaclip~ limits the change between samples in an incoming signal. It is similar to the clip~ object,
but it limits amplitude changes with respect to slope rather than amplitude.

Input
signal In left inlet: Any signal.

float or int In middle inlet: Minimum slope for the rate of change of the output signal. The
minimum slope is typically negative.

In right inlet: Maximum slope for the rate of change of the output signal. The
maximum slope is typically positive.

Arguments
float Optional. Initial minimum and maximum slope values for the rate of change of

the output signal. If no argument is supplied, the minimum and maximum limits
are both initially set to 0. If a signal is connected to the middle or right inlet, the
corresponding argument is ignored.

Output
signal The input signal is sent out, with its change limited by the minimum and maxi-

mum slope values.

Examples

Limit a signal's rate of change

See Also

clip~ Limit signal amplitude

 298

downsamp~ Downsample
a signal

Input
signal In left inlet: A signal to be downsampled. The downsamp~ object samples and

holds a signal received in the left inlet at a rate set by an argument to the object of
the value received in the right inlet, expressed in samples. No interpolation of the
output is performed.

In right inlet: The rate, in samples, at which the incoming signal is to be down-
sampled.

int or float In right inlet: Sets the sample rate used to downsample the input signal. You can
specify the number of samples with floating-point values, but the downsamp~
object will sample the input at most as frequently as the current sampling rate.

Arguments
int or float Optional. Sets the sample rate.

Output
signal The input signal, resampled at the rate set by argument or by the value received in

the right inlet.

Examples

Sample and hold every n samples

See Also

degrade~ Signal quality reducer
sah~ Sample and hold

dspstate~ Report current
DSP settings

299

Input
bang Triggers a report out the dspstate~ object’s outlets, telling whether the audio is on

or off, the current sampling rate, and the signal vector size.

(on/off) The dspstate~ object reports DSP information whenever the audio is turned on
or off.

signal If a signal is connected to the dspstate~ object’s inlet, dspstate~ reports that sig-
nal’s sampling rate and vector size, rather than the global sampling rate and signal
vector size.

Arguments
None.

Output
int Out left outlet: If the audio is on or being turned on, 1 is sent out. If the audio is off

or being turned off, 0 is sent out.

float Out second outlet: Sampling rate of the connected signal or the global sampling
rate.

int Out third outlet: Current DSP signal vector size.

int Out fourth outlet: Current I/O signal vector size.

Examples

Trigger an action when audio is turned on or off; use sample rate to calculate timings

See Also

sampstoms~ Convert samples to milliseconds
mstosamps~ Convert milliseconds to samples
Tutorial 20 MIDI control: Sampler
Tutorial 25 Analysis: Using the FFT

 300

dsptime~ Report milliseconds
of audio processed

Input
bang When dsptime~ receives a bang, it reports the number of milliseconds corre-

sponding to the number of audio samples that have currently been processed.

Arguments
None.

Output
float The number of milliseconds corresponding to the number of audio samples that

have currently been processed. The value is based on the processed audio sample
count, not the real time of the millisecond timer. This means you can use the
dsptime~ object as a sort of clock in conjunction with the NonRealTime audio
driver.

Examples

Shut audio processing off automatically after 40 seconds have been processed

See Also

adstatus Access audio driver output channels
dspstate~ Report current DSP setting

edge~ Detect logical
signal transitions

301

Input
signal A signal that will change between zero and non-zero values, such as the output of

a signal comparison operator.

Arguments
None.

Output
bang Out left outlet: Sent when the input signal changes from zero to non-zero. The

minimum time between bang messages will not be shorter than the minimum
scheduler interval, which is generally equal to the signal vector size, but may be
larger if Scheduler in Audio Interrupt mode is not enabled.

Out right outlet: Sent when the input signal changes from non-zero to zero. The
output will not happen more often than the time represented by the number of
samples in the current input/output vector size.

Examples

Send a triggering Max message when a significant moment occurs in a signal

See Also

change~ Report signal direction
thresh~ Detect signal above a set value
zerox~ Zero-cross counter and transient detector

ezadc~ Audio input
and on/off button
Input
(mouse) Clicking on ezadc~ toggles audio processing on or off. Audio on is represented by

the object being highlighted.

int A non-zero number turns on audio processing in all loaded patches. 0 turns off
audio processing in all loaded patches.

local The word local, followed by 1, makes a click to turn on ezadc~ equivalent to send-
ing it the startwindow message. local 0 returns ezadc~ to its default mode where a
click to turn it on is equivalent to the start message.

open Opens the DSP Status window. The window is also brought to the front.

start Turns on audio processing in all loaded patches.

startwindow Turns on audio processing only in the patch in which this ezadc~ is located, and
in subpatches of that patch. Turns off audio processing in all other patches.

stop Turns off audio processing in all loaded patches.

wclose Closes the DSP Status window.

Arguments
None.

Output
signal Out left outlet: Audio input from channel 1.

Out right outlet: Audio input from channel 2.

Examples

Audio input for processing and recording
 302

ezadc~ Audio input
and on/off button
See Also

adstatus Access audio driver output channels
ezdac~ Audio output and on/off button
adc~ Audio input and on/off
303

ezdac~ Audio output
and on/off button
Input
signal In left inlet: The signal is sent to audio output channel 1. The signal in each inlet

must be between -1 and 1 to avoid clipping by the DAC.

In right inlet: The signal is sent to audio output channel 2.

(mouse) Clicking on ezdac~ toggles audio processing on or off. Audio on is represented by
the object being highlighted.

int A non-zero number turns on audio processing in all loaded patches. 0 turns off
audio processing in all loaded patches.

local The word local, followed by 1, makes a click to turn on ezdac~ equivalent to send-
ing it the startwindow message. local 0 returns ezdac~ to its default mode where a
click to turn it on is equivalent to the start message.

open Opens the DSP Status window. The window is also brought to the front.

start Turns on audio processing in all loaded patches.

startwindow Turns on audio processing only in the patch in which this ezdac~ is located, and
in subpatches of that patch. Turns off audio processing in all other patches.

stop Turns off audio processing in all loaded patches.

stopwindow Turns off audio processing only in the patch in which this ezdac~ is located, and
in subpatches of that patch.

wclose Closes the DSP Status window.

Arguments
None.

Output
None. The signal received in the inlet is sent to the corresponding audio output
channel.
 304

ezdac~ Audio output
and on/off button
Examples

Switch audio on and off, send signal to the audio outputs

See Also

adstatus Access audio driver output channels
ezadc~ Audio input and on/off button
adc~ Audio output and on/off
Tutorial 3 Fundamentals: Wavetable oscillator
305

fffb~ Fast fixed
filter bank
The fffb~ object implements a bank of bandpass filter objects, each of which is similar to the
reson~ filter object. An input signal is applied to all filters, and the outputs of each filter are avail-
able separately. This object is more efficient than using a number of reson~ objects, but for the sake
of speed does not accept signals for parameter changes.

Input
signal The signal present at the left inlet is sent to all of the filters.

freq In left inlet: The word freq, followed by a list consisting of an int and one or more
floats, sets the center frequencies of the filters starting with the filter whose index
is given by the first number. This filter's frequency is set to the second number in
the list. Any following numbers in the list set the frequencies of filters following
the first designated one. Indices are zero-based.

For example, the message freq 3 1974.0 333.0 1234.0 sets the frequency of the fourth
filter to 1974Hz, the fifth filter to 333Hz, and the sixth filter to 1234Hz.

freqAll in left inlet: The word freqAll, followed by a float, sets the center frequencies of all of
the filters to the given floating-point value.

freqRatio In left inlet: The word freqRatio, followed by a list of two or more numbers sets the
center frequency of the first filter to the first value in the list, and sets the frequen-
cies of the remaining filters by repeatedly multiplying the first value by the second,
so that the ratio of frequencies of successive filters is the second value—for exam-
ple, the message freqRatio 440. 2. sets the frequency of the first filter to 440Hz, the
frequency of the second to 880Hz, the frequency of the third to 1760Hz, and so
on.

If the second item in the list is the letter H rather than a number, the filters will be
tuned in a harmonic series. For example, the message freqRatio 100 H sets the fre-
quencies of the filters to 100Hz, 200Hz, 300Hz, 400Hz, and so on.

gain In left inlet: The word gain, followed by a list consisting of an int and one or more
floats, sets the gains of the filters starting with the filter whose index is given by the
first number. This filter's gain is set to the second number in the list. Any follow-
ing numbers in the list set the gains of filters following the first designated one.
Indices are zero-based.

gainAll In left inlet: The word gainAll, followed by a float, sets the gain of all of the filters to
the given floating-point value.

Q In left inlet: The symbol Q, followed by a list consisting of an int and one or more
floats, sets the Q factors of the filters, starting with the filter whose index is given
by the first number. This filter's Q factor is set to the second number in the list.
Any following numbers in the list set the Q factors of filters following the first des-
ignated one. Indices are zero-based.
 306

fffb~ Fast fixed
filter bank
QAll In left inlet: The word QAll, followed by a float, sets the Q of all of the filters to the
given floating-point value.

Arguments
int Obligatory. The first argument specifies the number of filters.

float Optional. Three additional float arguments may be used to specify the frequency
of the first filter, the ratio of frequencies between successive filters, and the Q fac-
tor for all of the filters.

symbol Optional. If you use the letter H as the second argument rather than a float, the fil-
ters will be tuned to a harmonic series rather than with ratios of frequencies.

Output
signal The output of each filter is provided at a separate outlet. The leftmost outlet is the

output of the first filter.

Examples

Stereo expansion by altering the base frequency and frequency ratio

See Also

reson~ Resonant bandpass filter
307

fft~ Fast Fourier transform
Input
signal In left inlet: The real part of a complex signal that will be transformed.

In right inlet: The imaginary part of a complex signal that will be transformed.

If signals are connected only to the left inlet and left outlet, a real FFT (fast Fourier
transform) will be performed. Otherwise, a complex FFT will be performed.

Arguments
int Optional. The first argument specifies the number of points (samples) in the FFT.

It must be a power of two. The default number of points is 512. The second argu-
ment specifies the number of samples between successive FFTs. This must be at
least the number of points, and must also be a power of two. The default interval is
512. The third argument specifies the offset into the interval where the FFT will
start. This must either be 0 or a multiple of the signal vector size. fft~ will correct
bad arguments, but if you change the signal vector size after creating an fft~ and
the offset is no longer a multiple of the vector size, the fft~ will not operate when
signal processing is turned on.

Output
signal Out left outlet: The real part of the Fourier transform of the input. The output

begins after all the points of the input have been received.

Out middle outlet: The imaginary part of the Fourier transform of the input. The
output begins after all the points of the input have been received.

Out right outlet: A sync signal that ramps from 0 to the number of points minus 1
over the period in which the FFT output occurs. You can use this signal as an
input to the index~ object to perform calculations in the frequency domain.
When the FFT is not being sent out (in the case where the interval is larger than
the number of points), the sync signal is 0.

Examples

Fast Fourier transform of an audio signal
 308

fft~ Fast Fourier transform
See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
index~ Sample playback without interpolation
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 25 Analysis: Using the FFT
309

fftin~ Input for a patcher
loaded by pfft~
The fftin~ object provides an signal input to a patcher loaded by a pfft~ object; it won’t do any-
thing if you try to use it anywhere other than inside a patcher loaded by the pfft~ object. Where
the pfft~ object manages the windowing and overlap of the incoming signal, fftin~ applies the
windowing function (the envelope) and performs the Fast Fourier Transform.

Input
signal Dummy inlet for the connection of a begin~ object. The signal input for an fftin~

object is an inlet in the pfft~ subpatcher which contains the object.

Arguments
int Obligatory. Determines the inlet number of the pfft~ which will be routed into

the fftin~ object. Inlet assignment starts at one, for the leftmost inlet in the pfft~.
Multiple fftin~ objects will typically have different inlet numbers.

symbol Specifies the window envelope function the fftin~ object will apply to overlapping
FFTs on the input signal. The options are square (i.e. no window envelope), han-
ning (the default), triangle, hamming and blackman (Note: The Blackman window
should be used with an overlap of 4 or more). If the symbol nofft is used, then the
fftin~ object will not use a windowing envelope and will not perform a Fast Fou-
rier Transform— it will echo the first half of its input sample window to its real
output and the second half of its input sample window to its imaginary output.
This can allow you to input raw control signals from outside the parent patcher
through inlets in the pfft~ object, provided its overlap is set to 2. Other overlap
values may not yield useful results.

Output
signal Out left outlet: This output contains the real-values resulting from the Fast Fou-

rier transform performed on the corresponding inlet of the pfft~. This output
frame is only half the size of the parent pfft~ object's FFT size because the spec-
trum of a real input signal is symmetrical and therefore half of it is redundant. The
real and imaginary pairs for one spectrum are called a spectral frame.

Out middle outlet: This output contains the imaginary-values resulting from the
the Fast Fourier transform performed on the corresponding inlet of the pfft~.
This output frame is only half the size of the parent pfft~ object's FFT size
because the spectrum of a real input signal is symmetrical and therefore half of it
is redundant. The real and imaginary pairs for one spectrum are called a spectral
frame.

Out right outlet: A stream of samples corresponding to the index of the current
bin whose data is being sent out the first two outlets. This is a number from 0-
(frame size - 1). The spectral frame size inside a pfft~ object's subpatch is equal to
half the FFT window size.
 310

fftin~ Input for a patcher
loaded by pfft~
Examples

fftin~ outputs a frequency/domain signal pair and a sync signal that indicates the bin number

See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
in Message input for a patcher loaded by poly~ or pfft
out Message output for a patcher loaded by poly~ or pfft~
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 26 Frequency Domain Signal Processing with pfft~
311

fftinfo~ Report information about a
patcher loaded by pfft~
Input
bang Causes the FFT window size, the FFT frame size (i.e., the signal vector size inside

the patcher loaded by pfft~), and the FFT hop size to be sent out the object’s out-
puts.

Arguments
None.

Output
int Out left outlet: The current FFT window size specified by argument to the pfft~

object.

Out middle outlet: The current spectral frame size (half the FFT window size).

Out right outlet: The current FFT hop size (i.e., the window size divided by the
overlap).

Examples

fftinfo~ reports information about the FFT subpatcher in which it is located
 312

fftinfo~ Report information about a
patcher loaded by pfft~
See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 25 Analysis: Using the FFT
Tutorial 26 Frequency Domain Signal Processing with pfft~
313

fftout~ Output for a patcher
loaded by pfft~
The fftout~ object provides an signal output to a pfft~ object; it won’t do anything if you try to use
it anywhere other than inside a patcher loaded by the pfft~ object. The fftout~ object performs an
inverse Fast Fourier Transform and applies a windowing function (an envelope), allowing the
pfft~ object to manage the overlap-add of the output signal windows.

Input
signal In left inlet: The real part of a signal that will be inverse-transformed back into the

time domain.

In right inlet: The imaginary part of a signal that will be inverse-transformed
back into the time domain.

Note that the real and imaginary inlets of fftout~ expect only the first half of the
spectrum, as output by fftin~. This half-spectrum is called a spectral frame in
pfft~ terminology.

Arguments
int Obligatory. Determines the outlet number in the pfft~ which will receive the out-

put of the fftout~ object. Outlet assignments start at 1 for the leftmost outlet of
pfft~. Multiple fftout~ objects will typically have different outlet numbers.

symbol Optional. Tells fftout~ which window envelope function to use when overlapping
fft's on the input signal. The options are square (i.e. no window envelope), hanning
(the default), and hamming. If the argument nofft is used, then the fftout~ will echo
its input signal to its output without performing a Fast Fourier transform. This
allows you to output raw control signals from the pfft~ to the parent patcher. Note
that when the nofft option is used, overlap-adding is still being performed to cre-
ate the output signal.

Output
signal The fftout~ object transforms frequency domain signals back into the time

domain, at which point they are overlap-added and output by the corresponding
outlet in the pfft~ object in which the subpatcher is loaded. The fftout~ object
itself has no outlets.
 314

fftout~ Output for a patcher
loaded by pfft~
Examples

fftout~ converts frequency domain signal pairs into time domain signals and sends them to pfft~

See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
out Message output for a patcher loaded by poly~ or pfft~
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 25 Analysis: Using the FFT
Tutorial 26 Frequency Domain Signal Processing with pfft~
315

filtergraph~ Graphical filter
editor
The filtergraph~ object is not a signal object per se, as it does not process audio signals by itself,
but it does react to the current MSP current sampling rate in order to generate filter coefficients for
the biquad~ object from higher-level parameters such as frequency, amplitude and resonance (Q).
Since the filtergraph~ object needs to use the current sampling rate to calculate the filter response,
Max/MSP must be using an audio driver in order for the object to properly display and calculate
values.

The filtergraph~ object was designed as both a display and a graphical user interface for a variety
of second order (two-pole two-zero) filters implemented using the biquad~ object. The horizontal
axis of the filtergraph~ object’s display represents frequency (which can be displayed on either a
linear or logarithmic scale), while its vertical axis represents amplitude. The curve displayed
reflects the frequency response of the current filter model. The frequency response is essentially
the amount that the filter will amplify or attenuate the frequencies present in an audio signal. The
biquad~ object does the actual filtering, based on the coefficients that filtergraph~ calculates and
sends to it in a list. You probably do not need to interact with the coefficients themselves, but the
mathematical equations are provided that describe their relationship to the higher-level parame-
ters.

The cutoff frequency is the center frequency of the filter's activity. Its specific meaning is different
for each filter type, but it can generally be identified as the transitional point of the graph's curve.
In addition, it is marked in the display by a colored rectangle whose width corresponds to the
bandwidth of the filter. The bandwidth is the range of a filter's effect, centered on the cutoff fre-
quency. Q is another term for the same parameter of filter “width” although it is described in dif-
ferent units (octave reciprocals instead of plain Hz). Further names used to reference bandwidth
include resonance, slope, S, and transitional band. For the most part, filtergraph~ uses bandwidth
or Q, which are inversely proportional to each other.

The interpretation of the gain parameter depends on the type of filter, but generally involves a lin-
ear scaling of values in the filter band, or across the entire spectrum.

High-level filter parameters can be changed by clicking and dragging on the object. By default,
horizontal mouse dragging is mapped to cutoff frequency, and vertical mouse movement is
mapped to gain (if gainmode is enabled). If the cursor is located directly over the edge of a filter
band, however, the band rectangle is highlighted, indicating that clicking and dragging will map
x-axis movement to adjust filter bandwidth, instead of cutoff frequency.

It is possible, especially in smaller filtergraph~ objects, to create such a high Q value that the band
is too narrow to click on it without selecting a bandwidth line for editing. For this and other pur-
poses, double-clicking will reverse the mouse interpretation for the duration of that click/drag
activity. Thus, if you double-click on a bandwidth line of a narrow filter, the mouse will be set to
edit cutoff frequency, instead of resonance.

Input
float In 1st-5th inlets: When in display mode, a float in one of the first five inlets

changes the current value of the corresponding biquad~ filter coefficient (a0, a1,
a2, b1, and b2, respectively), recalculates the filter’s frequency response based on
these coefficients and causes a list of the current filter coefficients to be output
from the leftmost outlet.
 316

filtergraph~ Graphical filter
editor
In 6th inlet: Sets the center or cutoff frequency parameter for the filter and causes
output.

In 7th inlet: Sets the gain parameter for the filter and causes output.

In 8th inlet: Sets the Q (resonance) or S (slope) parameter for the filter and causes
output.

Note: Input to any one of the inlets will recalculate the current filter’s graph and
trigger the output.

int Converted to float.

list In left inlet: A list of five int values which correspond to biquad~ filter coefficients
sets the filtergraph~ object’s internal values for these coefficients and causes the
object to output the list out its left outlet. If filtergraph~ is in display mode, it will
display the frequency response of the filter obtained from these coefficients.

in 6th inlet: A list of three values which correspond to center/cutoff frequency,
gain and Q/S (resonance/slope), sets these values, recalculates the new filter coef-
ficients and causes output. This is equivalent to the params message.

bang In left inlet: In display mode, bang causes the filtergraph~ object to send its inter-
nally-stored biquad coefficients out the leftmost outlet. In the interactive filter
modes, bang additionally causes the current filter parameters to be sent out their
respective outlets (see Output).

aconstrain In left inlet: The word aconstrain, followed by two float values, allows you to con-
strain the amplitude values within the specified range. This is useful to constrain
values obtained by clicking and dragging. Specifying aconstrain 0. 0. removes the
limits.

amp In left inlet: The amp message sets a frequency amplitude display. It is equivalent to
the spectrum 0 message.

autoout In left inlet: Toggles the automatic output on load feature. autoout 1 tells filter-
graph~ to automatically output its coefficients and parameters when a patch is
loaded. filtergraph~ saves its current state in a patcher. autoout 0 disables this fea-
ture. The default value is 1.

bandpass In left inlet: The word bandpass sets the filter type of the filtergraph~ object to
bandpass mode.It is equivalent to the mode 3 message. The frequency response of
the filter is based on three parameters: cf (center frequency, or cutoff frequency)
gain, and Q (resonance).

bandstop In left inlet: The word bandstop sets the filter type of the filtergraph~ object to
bandstop mode.It is equivalent to the mode 4 message. The frequency response of
317

filtergraph~ Graphical filter
editor
the filter is based on three parameters: cf (center frequency, or cutoff frequency)
gain, and Q (resonance).

brgb In left inlet: The word brgb, followed by three numbers between 0 and 255, sets the
color of the filtergraph~ object background (i.e., the area above the filter curve) in
RGB format. The default is 210 210 210.

cascade In left inlet: The cascade message works in display mode only. The word cascade,
followed by up to 24 groups of five float values corresponding to filter coefficients,
will display a composite filter response which shows the multiplication of a group
of biquad filters in cascade.

color In left inlet: The word color, followed by a number from 0 to 15, sets the color of
the filtergraph~ object to one of the 16 object colors, which are also available
using the Color submenu in the Object menu.

display In left inlet: The word display sets the filter type of the filtergraph~ object to display
only. It is equivalent to the mode 0 message. In display mode, filtergraph~ simply
displays the frequency response for a set of five biquad~ filter coefficients.

displaydot In left inlet: The displaydot message, followed by a 0 or 1, toggles the display of the
mousable bandwidth region when filtergraph~ is in display mode. This allows
you to use filtergraph~ as an interface to design and display your own filter algo-
rithms. The default is disabled (by default, display mode functions uniquely as a
display).

domain In left inlet: The domain message, followed by two integer frequencies in Hz, lets
you change the frequency display range of the filtergraph~. The default display
range is from 0 Hz to half the sampling rate (the Nyquist frequency).

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255, sets the
color of the filtergraph~ object foreground (i.e., the area below the filter curve) in
RGB format. The default is 170 170 170.

fconstrain In left inlet: The word fconstrain, followed by two float values, allows you to con-
strain the frequency values within the specified range. This is useful to constrain
values obtained by clicking and dragging. Specifying fconstrain 0. 0. removes the
limits.

fullspect In left inlet: The word fullspect, followed by a 0 or 1, lets you select either a half-
spectrum or full spectrum display. fullspect 0 (the default) specifies a half-spec-
trum from 0 Hz to the Nyquist frequency (half the sampling rate). fullspect 1 speci-
fies a full (mirrored) spectrum from -Nyquist to +Nyquist (the spectrum is
mirrored around 0 Hz). In full spectrum mode, the display has a red marker at
DC (0 Hz).
 318

filtergraph~ Graphical filter
editor
gainmode In left inlet: The word gainmode, followed by a 0 or 1, toggles the gain parameter for
the lowpass, highpass, bandpass, and bandstop filters. The traditional definitions
of these filters have a fixed gain of 1.0, but by gain-enabling them, their amplitude
response can be scaled without the additional use of a signal multiply at the filters
output.The default is 0 (disabled).

 highorder The highorder message works in display mode only. The word highorder, followed by
a list of n groups of biquad filter “a” coefficients and n-1 groups of biquad filter “b”
coefficients, will display the response of an nth order filter.

highpass In left inlet: The word highpass sets the filter type of the filtergraph~ object to high-
pass mode.It is equivalent to the mode 2 message. The frequency response of the
filter is based on three parameters: cf (center frequency, or cutoff frequency) gain,
and Q (resonance) or S (slope - used for the shelving filters).

highshelf In left inlet: The word highshelf sets the filter type of the filtergraph~ object to
highshelf mode.It is equivalent to the mode 7 message. The frequency response of
the filter is based on three parameters: cf (center frequency, or cutoff frequency)
gain, and S (slope).

lin In left inlet: The lin message sets a linear frequency display scale. It is equivalent to
the scale 0 message.

linmarkers In left inlet: The word linmarkers, followed by a list of up to 64 int values, will set
markers for the linear frequency display (See the markers message). By default, the
markers are set at ± SampleRate/4, SampleRate/2, and (3 * SampleRate)/4.

log In left inlet: The log message sets a log frequency display scale. It is equivalent to
the scale 1 message.

logamp In left inlet: The logamp message, followed by a 0 or 1, sets the amplitude display
scale. scale 0 sets a linear amplitude display (default), and scale 1 sets a log display
scale.

logmarkers In left inlet: The word logmarkers, followed by a list of up to 64 int values, will set
markers for the log frequency display (See the markers message). By default, the
markers are set at± 50Hz, 500Hz and 5kHz at 44.1kHz. These values correspond
to ± 0.007124, 0.071238, and 0.712379 radians for any sample rate.

lowpass In left inlet: The word lowpass sets the filter type of the filtergraph~ object to low-
pass mode.It is equivalent to the mode 1 message. The frequency response of the
filter is based on three parameters: cf (center frequency, or cutoff frequency) gain,
and Q (resonance).

lowshelf In left inlet: The word lowshelf sets the filter type of the filtergraph~ object to low-
shelf mode.It is equivalent to the mode 6 message. The frequency response of the
319

filtergraph~ Graphical filter
editor
filter is based on three parameters: cf (center frequency, or cutoff frequency) gain,
and S (slope).

markers In left inlet: The word markers, followed by a list of up to 64 frequency values will
place visual markers (vertical lines) at these frequencies behind the graph. The
markers message will set the markers used for both linear and logarithmic fre-
quency displays.

mode In left inlet: The word mode, followed by a number from 0-7, sets the current filter
type. The numbers and associated filter types are:

Number Filter type
0 display only
1 lowpass
2 highpass
3 bandpass
4 bandstop
5 peaknotch
6 lowshelf
7 highshelf

In display mode, filtergraph~ displays the frequency response for a set of five
biquad~ filter coefficients. In the other modes, it graphs the frequency response of
a filter based on three parameters: cf (center frequency, or cutoff frequency) gain,
and Q (resonance) or S (slope - used for the shelving filters).

mousemode In left inlet: The word mousemode followed by two int arguments, specifies the
interpretation of horizontal and vertical mouse movement. With one argument,
only the horizontal mouse mode is affected. The mouse mode values are the same
for both axes: (0 = off, 1 = normal, 2 = alternate).

For horizontal movement (specified by the first argument), normal behavior
means that clicking on the filter band and dragging horizontally changes the fil-
ter's cutoff frequency. When set to the alternate mouse mode (2), horizontal
movement affects Q, or resonance. When turned off (0), mouse activity along the
x-axis has no effect.

For vertical movement (specified by the second argument), normal behavior
means that the y-axis is mapped to gain during clicking and dragging activity.
When the alternate mouse mode (2) is selected, vertical movement changes the Q
(resonance) setting instead. When turned off (0), vertical mouse movement has
no effect.

params In left inlet: The word params, followed by three numbers specifying frequency,
gain and Q, sets the filter parameters and triggers output.
 320

filtergraph~ Graphical filter
editor
peaknotch In left inlet: The word peaknotch sets the filter type of the filtergraph~ object to
peaknotch mode.It is equivalent to the mode 5 message. The frequency response of
the filter is based on three parameters: cf (center frequency, or cutoff frequency)
gain, and Q (resonance).

phase In left inlet: The phase message sets a frequency phase display. It is equivalent to
the spectrum 1 message.

qconstrain In left inlet: The word qconstrain, followed by two float values, allows you to con-
strain the Q (resonance) values within the specified range. This is useful to pre-
vent Q settings that might be inappropriate in a specific context. It can also be
used to “lock” Q to a specific value, by sending that value as both the minimum
and the maximum (e.g., qconstrain 0.4 0.4). Specifying qconstrain 0. 0. removes the
limits.

query In left inlet: The word query, followed by a float value, will cause the amplitude and
phase response of the current filter at that frequency to be sent out the rightmost
outlet of the filtergraph~ object as a list.

range In left inlet: The range message, followed by a float value greater than 0, sets the
amplitude display range of filtergraph~. The amplitude is displayed from 0 to the
range value along the vertical axis of the graph. (default value 2.0)

rgb In left inlet: The word rgb, followed by three numbers between 0 and 255, sets the
color of the filtergraph~ display. The background color for the object display will
be automatically selected. The brgb, frgb, rgb2, rgb3, and rgb4 messages can be used
to set the colors of individual portions of a filtergraph~ object display.

rgb2 In left inlet: The word rgb2, followed by three numbers between 0 and 255, sets the
color of the filtergraph~ object’s curve line (i.e., the line that separated the areas
above and below the filter curve) in RGB format. The default is 0 0 0 (black).

rgb3 In left inlet: The word rgb3, followed by three numbers between 0 and 255, sets the
color of the filtergraph~ display markers in RGB format. The default is 0 0 0
(black).

rgb4 In left inlet: The word rgb4, followed by three numbers between 0 and 255, sets the
color of the rectangle that outlines the filtergraph~ object display in RGB format.
The default is 0 0 0 (black).

scale In left inlet: The scale message, followed by a 0 or 1, sets the frequency display
scale. scale 0 sets a linear frequency display (default), and scale 1 sets a log display
scale.

set In left inlet: The word set, followed by a list of five int values which correspond to
biquad~ filter coefficients, sets the filtergraph~ object’s internal values for these
321

filtergraph~ Graphical filter
editor
coefficients but does not cause output. If filtergraph~ is in display mode, it will
display the frequency response of the filter obtained from these coefficients.

in 6th inlet: A list of three values which correspond respectively to center/cutoff
frequency, gain and Q/S (resonance/slope), sets these values, recalculates the new
filter coefficients but does not cause output. In display mode this message has no
effect.

spectrum In left inlet: The word spectrum, followed by a 0 or 1, specifies whether to display
the amplitude or phase, with respect to frequency. spectrum 0 sets a frequency
amplitude display (default), and spectrum 1 sets a phase frequency display scale.

(loadbang) In left inlet: filtergraph~ responds to a loadbang message sent to it when a patcher is
loaded (See the autoout message).

(Get Info...) Opens the filtergraph~ object’s Inspector window.

(preset) You can save and restore the settings of filtergraph~ using a preset object.

Inspector
The behavior of a filtergraph~ object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show Floating
Inspector from the Windows menu, selecting any filtergraph~ object displays the
filtergraph~ Inspector in the floating window. Selecting an object and choosing
Get Info… from the Object menu also displays the Inspector.

The filtergraph~ Inspector lets you set the following attributes:

The Filter Type pop-up menu sets the kind of filter type to be displayed by the fil-
tergraph~ object. The filter types are Display (the default), Lowpass, Highpass,
Bandpass, Bandstop, Peak/Notch, Low Shelf, or High Shelf. If you are operating in
Display mode, a checkbox is used to enable the two red circles when in display
mode. In any of the filter modes, you can used the Gain-Enabled checkbox to
enable gain scaling in the display.

The Constraint options let you set maximum and minimum ranges for mousing
and input constraints for both the frequency and amplitude axes.

The Frequency Display options allow you to set minimum and maximum fre-
quency ranges to display (the default values are 0 and 22050 Hz.), let you choose
linear (the default) or logarithmic display scales, and choose a full spectrum dis-
play.

The Amplitude Display options allow you to set the Minimum and Maximum Dis-
play Range (the default values 0.0625 and 16 correspond to +-12dB). Radio but-
tons allow you to also select Amplitude Response (the default) or Phase Response
 322

filtergraph~ Graphical filter
editor
(whose range is always -π to π). If you have selected amplitude response, you may
also choose between linear (default) or logarithmic (i.e. deciBel) display of val-
ues.

Checking the Output Coefficients on Load checkbox will cause the filtergraph~
objects to output its biquad~ filter coefficients when the object receives messages
which configure the filter.

Checking the Show Numerical Display option makes filtergraph~ display the
numerical values for frequency, gain and Q values while clicking and dragging the
bandwidth rectangle with the mouse.

Checking the Show deciBel Values option sets the filtergraph~ object to display the
numerical values for gain change in deciBels represented by the small ticks at the
right-hand side of the object's display.

The Color pop-up menu lets you use a swatch color picker or RGB values to spec-
ify the colors used for display by the filtergraph~ object. These are described
above, in the Input section.

 The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments
None.

Output
list Out leftmost outlet: a list of 5 floating-point filter coefficients for the biquad~

object. Coefficients output in response to mouse clicks and changes in the coeffi-
cient or filter parameter inlets. They are also output when the audio is turned on,
and optionally when the patch is loaded if the automatic output option is turned
on (see autoout message, above).

Out rightmost (sixth) outlet: a list of 2 floating-point values (amplitude, phase)
output in response to the query message (see above).

float Out middle four outlets: Frequency, Gain (linear), Resonance (Q) and Band-
width output in response to clicks on the filtergraph~ object
323

filtergraph~ Graphical filter
editor
Examples

The filtergraph~ object greatly simplifies working with the biquad~ object

See Also

allpass~ Allpass filter
biquad~ Two-pole, two-zero filter
delay~ Delay line specified in samples
lores~ Resonant lowpass filter
reson~ Resonant bandpass filter
teeth~ Comb filter with feedforward and feedback delay control
 324

frameaccum~ Compute "running phase" of
successive phase deviation frames

325

Input
signal The input to be accumulated.

Arguments
None.

Output
signal The frameaccum~ object computes a running phase by keeping a sum of the val-

ues in each position of its incoming signal vectors. In other words, for each signal
vector, the first sample of its output will be the sum of all of the first samples in
each signal vector it has received, the second sample of its output will be the sum
of all the second samples in each signal vector, and so on. When used inside a
pfft~ object, it can keep a running phase of the FFT because the FFT size is equal
to the signal vector size.

Examples

frameaccum~ computes the running phase between frames of spectral data

See Also

framedelta~ Compute phase deviation between successive FFT frames
Tutorial 26 Frequency Domain Signal Processing with pfft~

 326

framedelta~ Compute phase deviation
between successive FFT frames

Input
signal The input on which the deviation will be computed.

Arguments
None.

Output
signal The framedelta~ object computes a running phase deviation by subtracting val-

ues in each position of its previously received signal vector from the current signal
vector. In other words, for each signal vector, the first sample of its output will be
the first sample in the current signal vector minus the first sample in the previous
signal vector, the second sample of its output will be the second sample in the cur-
rent signal vector minus the second sample in the previous signal vector, and so
on. When used inside a pfft~ object, it keeps a running phase deviation of the
FFT because the FFT size is equal to the signal vector size.

Examples

framedelta~ computes the difference between successive frames of FFT data

See Also

frameaccum~ Compute “running phase” of successive phase deviation frames
Tutorial 26 Frequency Domain Signal Processing with pfft~

ftom Convert frequency
to a MIDI note number

327

Input
float or int A frequency value. The corresponding MIDI pitch value (from 0 to 127) is sent

out the outlet.

Arguments
float Optional. If a float value is present, the ftom object outputs floating-point values.

By default, it outputs int values.

Output
int or float The MIDI note value that corresponds to the input frequency. When an input fre-

quency falls between two equal tempered pitches, the value is rounded to the near-
est int when ftom is used in its default int mode. When ftom is used in the optional
float mode, the fractional part of the float is included. The fractional part could
be used to calculate an additional pitch offset for applying MIDI pitch bend.

Examples

Find the MIDI key number to play the same pitch as an MSP oscillator

See Also

expr Evaluate a mathematical expression
mtof Convert a MIDI note number to frequency

function Graphical breakpoint
function editor
Input
(mouse) You can use the mouse to draw points in a line segment function; the finished

function can then be sent to a line~ object for use as a control signal in MSP.
Clicking on empty space in the function adds a breakpoint, which you can begin
to move immediately by dragging (unless function has been sent the clickadd 0 mes-
sage). Clicking on a breakpoint allows you to move the breakpoint by dragging
(unless function has been sent the clickmove 0 message). The X and Y values of the
breakpoint are displayed in the upper part of the object’s box. Shift-clicking on a
breakpoint deletes that point from the function. Command-clicking on Macin-
tosh or Control-clicking on Windows on a breakpoint toggles the sustain prop-
erty of the point. Sustain points are outlined in white. Whenever an editing
operation with the mouse is completed, a bang is sent out the right outlet.

Points with a Y value of 0 are outlined circles; other points are solid. This allows
you to see at a glance whether a function starts or ends at Y = 0.

float or int The value is taken as an X value and outputs a corresponding Y value out the left
outlet. The Y value is produced by linear floating-point interpolation of the func-
tion. If the X value lies outside the first or last breakpoint, the Y value is 0.

bang Triggers a list output of the current breakpoints from the middle-left outlet for-
matted for use by the line~ object. As an example, if the function contained break-
points at X = 1, Y = 0; X = 10, Y = 1; and X = 20, Y = 0, the output would be 0, 1 9
0 10. If the optional output mode is enabled, the output would be 0 0 1 9 0 10.

If there are any sustain points in the function, bang outputs a list of all the points
up to the sustain point. Additional points in the function, up to a subsequent sus-
tain point or the end point, whichever applies, can be output by sending the next
message. See the description of the next and sustain messages for additional infor-
mation.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB values
for the background color of the function object. The default value is light gray
(brgb 204 204 204).

clear The word clear by itself erases all existing breakpoints. The word clear can also be
followed by one or more breakpoint indices (starting at 0) to clear selected break-
points.

clickadd The message clickadd 0 prevents the user from creating new breakpoints by drag-
ging them with the mouse. clickadd 1 allows the user to create new breakpoints. The
default behavior allows the user to create new breakpoints. The current setting is
saved with the object when its patcher is saved.

clickmove The message clickmove 0 prevents the user from moving existing breakpoints by
dragging them with the mouse. clickmove 1 allows the user to drag breakpoints.
 328

function Graphical breakpoint
function editor
The default behavior allows the user to drag breakpoints. The current setting is
saved with the object when its patcher is saved.

color The word color, followed by a number between 0 and 15, sets the color of the dis-
played breakpoints to the specified color. The colors corresponding to the index
are displayed in the Color… dialog in the Max menu.

(Color…) You can change the color of breakpoints by selecting a function object in an
unlocked patcher window and choosing Color… from the Max menu.

domain The word domain, followed by a float or int value, sets the maximum displayed X
value. The minimum value is always 0. The actual values of breakpoints are not
modified, so this message could cause breakpoints whose X values are greater
than the new maximum displayed X value to disappear.

dump Outputs a series of two-item lists, containing the X and Y values for each of the
breakpoints, out the function object’s middle-right outlet. An optional symbol
argument can be used to specify a receive objects as a destination.

fix The word fix, followed by a number specifying the index of a point and 0 or 1, pre-
vents the user from changing the point if the second number is 1, and allows the
user to change the point if the second number is 0. By default, points are moveable
unless clickmove 0 has been sent to disable moving of all points.

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB values
for the breakpoints displayed by the function object. The default value is grey (frgb
82 82 82).

legend The word legend, followed by a 1 or 0, enables (1) or disables (0) the numerical dis-
play (legend) of the function object, displayed when a point is highlighted or
updated. The default value is on (legend 1).

list If the list contains two values, a new point is added to the function. The first value
is X, the second is Y.

If the list contains three values, an existing point in the function is modified. The
first value is the index (starting at 0) of a breakpoint to modify, the second is the
new X value for the breakpoint, and the third is the new Y value for the break-
point. (If the index number in the list refers to a breakpoint that does not exist, the
message is ignored.)

listdump Outputs a single list which contains all X and Y values for each of the breakpoints
out the function object’s middle-right outlet.An optional symbol argument can be
used to specify a receive objects as a destination.

next The next message continues a list output from the sustain point where the output
of the last bang or next message ended. For instance, if the function contained
breakpoints at (a) X = 1, Y = 0; (b) X = 10, Y = 1; and (c) X = 20, Y = 0, and point
329

function Graphical breakpoint
function editor
b was a sustain point, a bang message would output 0, 1 9 and a subsequent next
message would output 1, 0 10. After a next message reaches the end point, a subse-
quent next message is equivalent to a bang message. next is also equivalent to a bang
when no bang has been sent that reached a sustain point, or when a function con-
tains no sustain points.

nth The word nth, followed by a number, uses the number as the index (starting at 0)
of a breakpoint, and outputs the Y value of the breakpoint out the left outlet. If no
breakpoint with the specified index exists, no output occurs.

outputmode The word outputmode, followed by a 1 or 0, enables (1) or disables (0) the optional
output mode. If on, when the function object receives a bang, it sends its values in
single list in which the first Y value is followed by a 0, followed by any additional Y
values and associated times. When off, the object outputs its values as described
above in the description of the bang message. The optional output mode is off by
default.

range The word range, followed by two float or int values, sets the minimum and maxi-
mum display range for Y values. The actual values of breakpoints are not modi-
fied, so this message could cause breakpoints to disappear from view.

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the RGB values
for the line segments displayed by the function object. The default value is dark
gray (rgb2 85 85 85).

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the RGB values
for the sustain points displayed by the function object. The default value is white
(rgb3 255 255 255).

rgb4 The word rgb4, followed by three numbers between 0 and 255, sets the RGB values
for the numerical display (legend) of the function object when it is highlighted or
being updated. The default value is black (rgb4 0 0 0).

setrange The word setrange, followed by two float or int values, sets the minimum and maxi-
mum display range for Y values, then modifies the Y values of all breakpoints so
that they remain in the same place given the new range.

setdomain The word setdomain, followed by a float or int value, sets the maximum displayed X
value, then modifies the X values of all breakpoints so that they remain in the
same place given the new domain.

sustain The word sustain, followed by number specifying the index of a point and 0 or 1,
turns that point into a sustain point if the second number is 1, or into a regular
point if the second number is 0. By default, points are regular (non-sustain). The
behavior of sustain points is discussed in the description of the bang message
above. Command-clicking on Macintosh or Control-clicking on Windows also
toggle the sustain property of a point.
 330

function Graphical breakpoint
function editor
(preset) You can save and restore the breakpoint settings of function using a preset object.

Inspector
The behavior of a function object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating
Inspector from the Windows menu, selecting any function object displays the
function Inspector in the floating window. Selecting an object and choosing Get
Info… from the Object menu also displays the Inspector.

The function Inspector lets you set the following attributes:

The Graph Range options allow you to set the minimum (default 0.) and maxi-
mum (default 1.0) display ranges for Y values.

The Graph Domain option sets the maximum (default 1000.) maximum displayed
X value in milliseconds. The minimum value is always 0.

Checking the Enable Dragging Points checkbox will allow the user to create new
breakpoints by clicking with the mouse. The default enables behavior allows the
user to create new breakpoints. The current setting is saved with the object when
its patcher is saved. Checking the Enable Dragging Points checkbox will allow the
user to move existing breakpoints by dragging them with the mouse. The default
behavior allows the user to drag breakpoints. Checking the Show Legend check-
box enables the numerical display (legend) of the function object, displayed when
a point is highlighted or updated. The default value is enabled. Checking the Out-
put Only List for line~ checkbox enables the optional output mode of the function
object. When enabled, the function object will output a single list which consists
of all breakpoints when the object receives a bang. The optional output mode is off
by default.

The Color pop-up menu lets you use a swatch color picker or RGB values to spec-
ify the colors used for display by the function object. Points sets the color for the
breakpoints displayed (default 82 82 82), and Background sets the color for the
message area in which the hint appears (default 204 204 204). Line Segments sets
the color for the line segments that connect the breakpoints (default 85 85 85).
Sustain Points sets the color used to display sustain points (default 255 255 255).
Legend Text sets the color for the legend text (default 0 0 0).

 The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments
None.
331

function Graphical breakpoint
function editor
Output
float Out left outlet: The interpolated Y value is sent out in response to a float or int X

value received in the inlet; or a stored Y value is sent out in response to an nth mes-
sage.

list Out middle-left outlet: When bang is received, a float is sent out for the first stored
Y value, followed by a list containing pairs of numbers indicating each subsequent
stored Y value and its transition time (the difference between X and the previous
X). This format is intended for input to the line~ object.

Out middle-right outlet: A series of two-item lists, containing the X and Y values
of each of the function object’s breakpoints, is sent out when a dump message is
received.

bang Out right outlet: When a mouse editing operation is completed, a bang is sent out.

Examples

Send line segment information to line~, or look up (and interpolate) individual Y values

See Also

line~ Linear ramp generator
Tutorial 7 Synthesis: Additive synthesis
 332

gain~ Exponential scaling
volume slider
Input
signal In left inlet: The input signal to be scaled by the slider.

int In left inlet: Sets the value of the slider, ramps the output signal to the level corre-
sponding to the new value over the specified ramp time, and outputs the slider’s
value out the right outlet.

float In left inlet: Converted to int.

In right inlet: Sets the ramp time in milliseconds. The default is 10 milliseconds.

bang Sends the current slider value out the right outlet.

color In left inlet: The word color, followed by a number from 0 to 15, sets the color of
the striped center portion of gain~ to one of 16 object colors, which are also avail-
able by choosing Color… from the Max menu.

inc The word inc, followed by a float, sets the increment value used to calculate the
output scale factor based on the input value. The default value is 1.071519. See the
Inspector section for an explanation of the calculation.

resolution The word resolution, followed by a number, sets the sampling interval in millisec-
onds. This controls the rate at which the display is updated as well as the rate that
numbers are sent out the gain~ object’s outlet.

scale The word scale, followed by a float, sets the base output value used to calculate the
output scale factor based on the input value. The default value is 7.94231. See the
Inspector section for an explanation of the calculation.

set In left inlet: The word set, followed by a number, sets the value of the slider, ramps
the output signal to the level corresponding to the new value over the specified
ramp time, but does not output the slider’s value out the right outlet.

set In left inlet: Sets the value of the slider, ramps the output signal to the level corre-
sponding to the new value over the specified ramp time, but does not output the
slider’s value out the right outlet.

size In left inlet: The word size, followed by a number, sets the range of gain~ to the
number. The values of the slider will then be 0 to the range value minus 1. The
default value is 158.

Inspector
The behavior of a gain~ object is displayed and can be edited using its Inspector.
If you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any gain~ object displays the gain~ Inspector
333

gain~ Exponential scaling
volume slider
in the floating window. Selecting an object and choosing Get Info… from the
Object menu also displays the Inspector.

The gain~ Inspector lets you set four parameters—the Range, the second is the
Base Value, and the Increment. In the following expression that calculates the out-
put scale factor based on the input value (the same as the linedrive object), the
range is a, the base value is b, the increment is c, the input is x, e is the base of the
natural logarithm (approx. 2.718282) and the output is y.

y = b e-a log c ex log c

For more information about these parameters, see the linedrive object.

The default values of range (158), base value (7.94231), and increment
(1.071519) provide for a slider where 128 is full scale (multiplying by 1.0), 0 pro-
duces a zero signal, and 1 is 75.6 dB below the value at 127. A change of 10 in the
slider produces a 6 dB change in the output. In addition, since the range is 158,
slider values from 129 to 157 provide 17.4 dB of headroom. When the slider is at
157, the output signal is 17.4 dB louder than the input signal.

You can also set the Interpolation Time by entering a value which will set the inter-
polation time for the gain~ object The default value is 10 milliseconds.

 The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments
None.

Output
signal Out left outlet: The input signal, scaled by the current slider value as x in the equa-

tion shown above.

int Out right outlet: The current slider value, when dragging on the slider with the
mouse or when gain~ receives an int or float in its left inlet.
 334

gain~ Exponential scaling
volume slider
Examples

Specialized fader to scale a signal exponentially or logarithmically

See Also

linedrive Scale integers for use with line~
335

gate~ Route a signal to
one of several outlets
Input
int In left inlet: Determines the outlet that will send out the signal coming in the right

inlet. If the number is 0 or negative, the right inlet is shut off and a zero signal is
sent out. If the number is greater than the number of outlets, the signal is sent out
the rightmost outlet. If a signal is connected to the left inlet, gate~ ignores int or
float messages received in its left inlet.

float Converted to int.

signal In left inlet: If a signal is connected to the left inlet, gate~ operates in a mode that
uses signal values to determine the outlet that will receive its input signal (the sig-
nal coming in the right inlet). If the signal coming in the left inlet is 0 or negative,
the inlet is shut off and a zero signal is sent out. If it is greater than or equal to 1,
but less than 2, the input signal goes to the left outlet. If the signal is greater than
or equal to 2 but less than 3, the input signal goes to the next outlet to the right,
and so on. If the signal in the left inlet is greater than the number of outlets, the
rightmost outlet is used.

In right inlet: The input signal to be passed through to one of the gate~ object’s
outlets, according to the most recently received int or float in the left inlet, or the
value of the signal coming in the left inlet.

If the signal network connected to the right inlet of gate~ contains a begin~
object—and a signal is not connected to the left inlet of the gate~—all processing
between the begin~ outlet and the gate~ inlet will be turned off when gate~ is
shut off.

Arguments
int Optional. The first argument specifies the number of outlets. The default is 1. The

second argument sets the outlet that will initially send out the input signal. The
default is 0, where all signals are shut off and zero signals are sent out all outlets. If
a signal is connected to the left inlet, the second argument is ignored.

Output
signal Depending on the value of the left inlet (either signal or number), one of the

object’s outlets will send out the input signal and rest will send out zero signals, or
(if the inlet is closed) all outlets will send out zero signals.
 336

gate~ Route a signal to
one of several outlets
Examples

gate~ routes the input signal to one of its outlets, or shuts it off entirely

See Also

selector~ Assign one of several inputs to an outlet
begin~ Define a switchable part of a signal network
Tutorial 4 Fundamentals: Routing signals
337

groove~ Variable-rate looping
sample playback
Input
signal In left inlet: Defines the sample increment for playback of a sound from a buffer~.

A sample increment of 0 stops playback. A sample increment of 1 plays the sample
at normal speed. A sample increment of -1 plays the sample backwards at normal
speed. A sample increment of 2 plays the sample at twice the normal speed. A
sample increment of .5 plays the sample at half the normal speed. The sample
increment can change over time for vibrato or other types of speed effects. The
groove~ object uses the buffer~ sampling rate to determine playback speed.

If a loop start and end have been defined for groove~ and looping is turned on,
when the sample playback reaches the loop end the sample position is set to the
loop start and playback continues at the current sample increment.

In middle inlet: Sets the starting point of the loop in milliseconds.

In right inlet: Sets the end point of the loop in milliseconds.

int or float In left inlet: Sets the sample playback position in milliseconds. 0 sets the playback
position to the beginning.

In middle inlet: Sets the starting point of the loop in milliseconds. If a signal is
connected to the inlet, int and float numbers are ignored.

In right inlet: Sets the end point of the loop in milliseconds. If a signal is con-
nected to the inlet, int and float numbers are ignored.

loop The word loop, followed by 1, turns on looping. loop 0 turns off looping. By default,
looping is off.

loopinterp The word loopinterp, followed by 1, enables interpolation about start and end
points for a loop. loop 0 turns off loop interpolation. By default, loop interpolation
is off.

reset Clears the start and end loop points.

set The word set, followed by a symbol, switches the buffer~ object containing the
sample to be used by groove~ for playback.

setloop The word setloop, followed by two numbers, sets the start and end loop points in
milliseconds.

startloop Causes groove~ to begin sample playback at the starting point of the loop. If no
loop has been defined, groove~ begins playing at the beginning.

(mouse) Double-clicking on a groove~ object opens the sample display window of the
buffer~ object associated with the groove~ object.
 338

groove~ Variable-rate looping
sample playback
Arguments
symbol Obligatory. Names the buffer~ object containing the sample to be used by

groove~ for playback.

int Optional. A second argument may specify the number of output channels: 1, 2, or
4. The default number of channels is 1. If the buffer~ being played has fewer chan-
nels than the number of groove~ output channels, the extra channels output a
zero signal. If the buffer~ has more channels, channels are mixed.

Output
signal Out left outlet: Sample output. If groove~ has two or four output channels, the left

outlet plays the left channel of the sample.

Out middle outlets: Sample output. If groove~ has two or four output channels,
the middle outlets play the channels other than the left channel.

Out right outlet: Sync output. During the loop portion of the sample, this outlet
outputs a signal that goes from 0 when the loop starts to 1 when the loop ends.

Examples

See Also

2d.wave~ Two-dimensional wavetable
buffer~ Store audio samples
play~ Position-based sample playback
record~ Record sound into a buffer
Tutorial 14 Sampling: Playback with loops
Tutorial 20 MIDI control: Sampler
339

ifft~ Inverse fast Fourier transform
Input
signal In left inlet: The real part of a complex signal that will be inverse transformed.

In right inlet: The imaginary part of a complex signal that will be inverse trans-
formed.

If signals are connected only to the left inlet and left outlet, a real IFFT (inverse
Fast Fourier transform will be performed. Otherwise, a complex IFFT will be
performed.

Arguments
int Optional. The first argument specifies the number of points (samples) in the

IFFT. It must be a power of two. The default number of points is 512. The second
argument specifies the number of samples between successive IFFTs. This must
be at least the number of points, and must be also be a power of two. The default
interval is 512. The third argument specifies the offset into the interval where the
IFFT will start. This must either be 0 or a multiple of the signal vector size. ifft~
will correct bad arguments, but if you change the signal vector size after creating
an ifft~ and the offset is no longer a multiple of the vector size, the ifft~ will not
operate when signal processing is turned on.

Output
signal Out left outlet: The real part of the inverse Fourier transform of the input. The

output begins after all the points of the input have been received.

Out middle outlet: The imaginary part of the inverse Fourier transform of the
input. The output begins after all the points of the input have been received.

Out right outlet: A sync signal that ramps from 0 to the number of points minus 1
over the period in which the IFFT output occurs. When the IFFT is not being out-
put (in the case where the interval is larger than the number of points), the sync
signal is 0.
 340

ifft~ Inverse fast Fourier transform
Examples

Using fft~ and ifft~ for analysis and resynthesis

See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 25 Analysis: Using the FFT
341

 342

in Message input for a patcher
loaded by poly~ or pfft~

Input
None.

Arguments
int Obligatory. Each in object is identified by a unique index number which specifies

which message inlet in a poly~ or pfft~ object it corresponds to. The first outlet is
1.

Output
message Each in object in a patcher loaded by the poly~ or pfft~ objects appears as an inlet

at the top of the object. Messages received at the first message inlet of the poly~ or
pfft~ object are sent to the first in object (i.e., the in 1 object) in the loaded patcher,
and so on. The number of total inlets in a poly~ or pfft~ object is determined by
whether there are a greater number of in~ or in objects in the loaded patch (e.g., if
your loaded poly~ patcher has three in~ objects and only two in objects, the poly~
object will have three inlets, two of which will accept both signals and anything
else, and a third inlet which only takes signal input).

Examples

Message inlets of the poly~ object correspond to the in objects inside the loaded patcher

See Also

in~ Signal input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~
out~ Signal output for a patcher loaded by poly~
pfft~ Spectral processing manager for patchers
poly~ Polyphony/DSP manager for patchers
thispoly~ Control poly~ voice allocation and muting
Tutorial 21 MIDI control: Using the poly~ object

in~ Signal input for a
patcher loaded by poly~

343

Input
None.

Arguments
int Obligatory. Each in~ object is identified by a unique index number which speci-

fies which signal inlet in a poly~ object it corresponds to. The first inlet is 1.

Output
signal Each in~ object in a patcher loaded by the poly~ object appears as an inlet at the

top of the poly~ object. Signals received at the first message inlet of the poly~
object are sent to the first in~ object (i.e., the in~ 1 object) in the loaded patcher,
and so on. The number of total inlets in a poly~ object is determined by whether
there are a greater number of in~ or in objects in the loaded patch (e.g., if your
loaded patcher has three in~ objects and only two in objects, the poly~ object will
have three inlets, two of which will accept both signals and anything else, and a
third inlet which only takes signal input).

Examples

Signal inlets of the poly~ object correspond to the in objects inside the loaded patcher

See Also

in Message input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~
out~ Signal output for a patcher loaded by poly~
poly~ Polyphony/DSP manager for patchers
thispoly~ Control poly~ voice allocation and muting
Tutorial 21 MIDI control: Using the poly~ object

index~ Sample playback
without interpolation
Input
signal In left inlet: The sample index to read from a buffer~ object’s sample memory.

int In right inlet: The channel (1-4) of the buffer~ to use for output. By default,
index~ uses the first channel of the buffer~.

set The word set, followed by the name of a buffer~ object, causes index~ to read from
that buffer~.

(mouse) Double-clicking on index~ opens an editing window where you can view the con-
tents of its associated buffer~ object.

Arguments
symbol Obligatory. Names the buffer~ object whose sample memory is used by index~

for playback.

int Optional. Following the name of the buffer~, you may specify which channel to
use within the associated buffer~. The default channel is 1.

Output
signal The output consists of samples at the sample indices specified by the input. No

interpolation is performed if the input sample index is not an integer.

Examples

Look up specific samples in the buffer~, using index~
 344

index~ Sample playback
without interpolation
See Also

2d.wave~ Two-dimensional wavetable
cycle~ Table lookup oscillator
buffer~ Store audio samples
buffir~ Buffer-based FIR filter
fft~ Fast Fourier transform
wave~ Variable-size wavetable
Tutorial 13 Sampling: Recording and playback
345

info~ Report information
about a sample
Input
bang In left inlet: Causes a report of information about a sample contained in the asso-

ciated buffer~ object.

(mouse) Double-clicking on info~ opens an editing window where you can view the con-
tents of its associated buffer~ object.

Arguments
symbol Obligatory. Names the buffer~ object for which info~ will report information.

Output

Most of the information reported by info~ is taken from the audio file most recently read into the
associated buffer~. If this information is not present, only the sampling rate is sent out the left out-
let. No output occurs for any item that’s missing from the sound file.

float Out left outlet: The sampling rate of the sample.

Out 3rd outlet: Sustain loop start, in milliseconds.

Out 4th outlet: Sustain loop end, in milliseconds.

Out 5th outlet: Release loop start, in milliseconds.

Out 6th outlet: Release loop end, in milliseconds.

Out 7th outlet: Total time of the associated buffer~ object, in milliseconds.

Out 8th outlet: Name of the most recently read audio file.

list Out 2nd outlet: Instrument information about the sample, as follows:

1. The MIDI pitch of the sample.

2. The detuning from the original MIDI note number of the sample,
in pitch bend units.

3. The lowest MIDI note number to use when playing this sample.

4. The highest MIDI note number to use when playing this sample.

5. The lowest MIDI velocity to use when playing this sample.

6. The highest MIDI velocity to use when playing this sample.

7. The gain of the sample (0-127).
 346

info~ Report information
about a sample
Examples

Check sample rate of a sample; use other information contained in a sample

See Also

buffer~ Store audio samples
mstosamps~ Convert milliseconds to samples
sfinfo~ Report audio file information
Tutorial 14 Sampling: Playback with loops
Tutorial 20 MIDI control: Sampler
347

ioscbank~ Interpolating
oscillator bank
Input
signal or float In left inlet: Sets the frequency of the oscillator whose index is currently refer-

enced to the current floating-point value of the signal. The default value is 0.

In 2nd inlet: Sets the magnitude (amplitude) of the oscillator whose index is cur-
rently referenced.

In 3rd inlet: If frame sync is enabled using the framesync 1 message, a signal in the
range 0-1.0 sets the phase of the oscillator currently being referenced.

In 4th inlet: Sets the index of the oscillator currently being referenced.

float In 3rd inlet: A float in the range 0-1.0 sets the phase of the oscillator currently
being referenced.

clear The word clear sets the frequency of all oscillators to zero and zeros all amplitudes.

copybuf In left inlet: The word copybuf, followed by a symbol that specifies a buffer, copies
4096 samples from the buffer into the ioscbank~ object’s internal wavetable. An
optional second integer argument specifies the position in the buffer at which
samples are loaded (offset).

framesync The word framesync, followed by a non-zero number, enables frame synchronous
operation. When frame synchronous operation is enabled, a given index's values
will only change or begin their interpolated ramps to the next value when the
index input signal is 0 (or once per n sample frame). Otherwise, a given index's
values will change or begin their interpolated ramps to the next value when the
index input signal is equal to that index. The default is off.

freqsmooth The word freqsmooth, followed by a number, sets the number of samples across
which frequency smoothing is done. The default is 1 (no smoothing).

magsmooth The word magsmooth, followed by a number, sets the number of samples across
which magnitude (amplitude) smoothing is done on an oscillator. The default is 0
(no amplitude smoothing).

set The word set, followed by pairs of floating-point values, sets the frequency and
amplitude of an oscillator in the oscillator bank. A list of n pairs will set the first n
oscillators in the ioscbank~ object and zero the amplitude of all others.

silence The word silence zeros the amplitude of all the oscillators.

size The word size, followed by a number, sets the number of oscillators. The default is
64.
 348

ioscbank~ Interpolating
oscillator bank
Arguments
int Optional. The number of oscillators. The default is 1.

int Optional. The number of samples across which frequency smoothing is done.

int Optional. The number of samples across which amplitude smoothing is done.

Output
signal A waveform consisting of the sum of the specified frequencies and amplitudes.

Examples

ioscbank~ lets you sound multiple interpolated oscillators with one object

See Also

oscbank~ Non-interpolating oscillator bank
349

kink~ Distort a sawtooth waveform
Input
signal In left inlet: The input to kink~ should be a sawtooth waveform output from a

phasor~ object that repeatedly goes from 0 to 1.

In right inlet: The multiplier that affects the slope of the output between an output
(Y) value of 0 and 0.5. After the output reaches 0.5, the waveform will increase to
1 so that the entire output moves from 0 to 1 in the same period of time as the
input. A slope multiplier of 1 (the default) produces no distortion Slope multipli-
ers below 1 have a slower rise to 0.5 than the input, and slope multipliers above 1
have a faster rise to 0.5 than the input.

float In right inlet: Same as signal. If a signal is attached to the right inlet, float input is
ignored.

Arguments
float Optional. Sets the default slope multiplier. If a signal is attached to the right inlet,

this argument is ignored.

Output
signal The output of kink~ should be fed to the right inlet of cycle~ (at zero frequency) to

produce a distorted sine wave (a technique known as phase distortion synthesis).
As the slope multiplier in the right inlet of kink~ deviates from 1, additional har-
monics are introduced into the waveform output of cycle~. If the slope multiplier
is rapidly increased and then decreased using a line~, the output of cycle~ may
resemble an attack portion of an instrumental sound.

Examples

Typical use of kink~ between phasor~ and cycle~.
 350

kink~ Distort a sawtooth waveform
See Also

phasor~ Sawtooth wave generator
triangle~ Triangle/ramp wavetable
351

line~ Linear ramp generator
Input
list The first number specifies a target value and the second number specifies a total

amount of time (in milliseconds) in which line~ should reach the target value. In
the specified amount of time, line~ generates a ramp signal from its current value
to the target value.

line~ accepts up to 64 target-time pairs in a list, to generate compound ramps.
(An example would be 0 1000 1 1000, which would go from the current value to 0 in
a second, then to 1 in a second.) Once one of the ramps has reached its target
value, the next one starts. A subsequent list, float, or int in the left inlet clears all
ramps yet to be generated.

float or int In left inlet: The number is the target value, to be arrived at in the time specified
by the number in the right inlet. If no time has been specified since the last target
value, the time is considered to be 0 and the output signal jumps immediately to
the target value.

In right inlet: The number is the time, in milliseconds, in which the output signal
will arrive at the target value.

Arguments
float or int Optional. Sets an initial value for the signal output. The default value is 0.

Output
signal Out left outlet: The current target value, or a ramp moving toward the target value

according to the currently stored value and the target time.

bang Out right outlet: When line~ has finished generating all of its ramps, bang is sent
out.

Examples

Linearly changing signal, or a function made up of several line segments
 352

line~ Linear ramp generator
See Also

click~ Create an impulse
curve~ Exponential ramp generator
Tutorial 2 Fundamentals: Adjustable oscillator
353

linedrive Scale numbers exponentially
for use with line~
Input
int or float In left inlet: The number is converted according to the following expression

y = b e-a log c ex log c

where x is the input, y is the output, a, b, and c are the three typed-in arguments,

and e is the base of the natural logarithm (approximately 2.718282).

The output is a two-item list containing y followed by the delay time most recently
received in the right inlet.

int In right inlet: Sets the current delay time appended to the scaled output. A con-
nected line~ object will ramp to the new target value over this time interval.

Arguments
int or float Obligatory. The first argument is the maximum input value, followed by the max-

imum output value. The third argument specifies the nature of the scaling curve.
The third argument must be greater than 1. The larger the value, the more steeply
exponential the curve is. An appropriate value for this argument is 1.06. The
fourth argument is the initial delay time in milliseconds. This value can be
changed via the right inlet.

Output
list When an int or float is received in the left inlet, a list is sent out containing a scaled

version of the input (see the formula above) and the current delay time.

Examples

Use linedrive for exponential value scaling
354

linedrive Scale numbers exponentially
for use with line~
See Also

expr Evaluate a mathematical expression
line~ Linear ramp generator
355

 356

log~ Logarithm of a signal

Input
signal In left inlet: log~ sends out a signal that is the logarithm of the input signal, to the

base specified by the typed-in argument or the value most recently received in the
right inlet. If a value in the signal is less than or equal to 0, log~ sends out a value
of 0.00000001.

float or int In right inlet: Sets the base of the logarithm. The default is 0, which is equivalent
to the natural logarithm (log to the base e, or 2.71828182). log to the base of 1 is
always 0.

Arguments
float or int Optional. Sets the base of the logarithm. The default value is 0.

Output
signal The logarithm of the input signal to the base specified by the initial argument or

the value most recently received in the right inlet.

Examples

Logarithm of a signal, to a specified base; can be used for creating curves

See Also

pow~ Signal power function
curve~ Exponential ramp generator
sqrt~ Square root of a signal

lookup~ Transfer function
lookup table
Input
signal In left inlet: Signal values are mapped by amplitude to values stored in a buffer~.

Each sample in the incoming signal within the range -1 to 1 is mapped to a corre-
sponding value in the current table size number of samples of the buffer~. Signal
values between -1 and 0 are mapped to the first half of the total number of sam-
ples after the current sample offset. Signal values between 0 and 1 are mapped to
the next half of the samples. Input amplitude exceeding the range from -1 to 1
results in an output of 0.

In middle inlet: Sets the offset into the sample memory of a buffer~ used to map
samples coming in the left inlet. The sample at the specified offset corresponds to
an input value of -1.

In right inlet: Sets the number of samples in a buffer~ used for the table. Samples
coming in the left inlet between -1 and 1 will be mapped by amplitude to the
specified range of samples. The default value is 512. lookup~ changes the table size
before it computes each vector but not within a vector. It uses the first sample in a
signal vector coming in the right inlet as the table size.

int or float The settings of offset and table size can be changed with an number in the middle
or right inlets. If a signal is connected to one of these inlets, a number in the corre-
sponding inlet is ignored.

set The word set, followed by a symbol, changes the associated buffer~ object.

(mouse) Double-clicking on lookup~ opens an editing window where you can view the
contents of its associated buffer~ object.

Arguments
symbol Obligatory. Names the buffer~ object whose sample memory is used by lookup~

for table lookup.

int Optional. After the buffer~ name, you may specify the sample offset in the sample
memory of the buffer~ used for a signal value of -1. The default offset is 0. The
offset value is followed by an optional table size that defaults to 512. lookup~
always uses the first channel in a multi-channel buffer~.

Output
signal Each sample in the incoming signal within the range -1 to 1 is mapped to a corre-

sponding position in the current table size number of samples of the named
buffer~ object, and the stored value is sent out.
357

lookup~ Transfer function
lookup table
Examples

See Also

buffer~ Store audio samples
peek~ Read and write sample values
Tutorial 12 Synthesis: Waveshaping
 358

lores~ Resonant lowpass filter
Input
signal In left inlet: Any signal to be filtered.

In middle inlet: Sets the lowpass filter cutoff frequency.

In right inlet: Sets a “resonance factor” between 0 (minimum resonance) and 1
(maximum resonance). Values very close to 1 may produce clipping with certain
types of input signals.

int or float An int or float can be sent in the middle or right inlets to change the cutoff fre-
quency or resonance. If a signal is connected one of the inlets, a number received
in that inlet is ignored.

clear Clears the filter’s memory. Since lores~ is a recursive filter, this message may be
necessary to recover from blowups.

Arguments
int or float Optional. Numbers set the initial cutoff frequency and resonance. The default

values for both are 0. If a signal is connected to the middle or right inlet, the argu-
ment corresponding to that inlet is ignored.

Output
signal The filtered input signal. The equation of the filter is

yn = scale * xn - c1 * yn-1 + c2 * yn-2

where scale, c1, and c2 are parameters calculated from the cutoff frequency and
resonance factor.

Examples

Specify cutoff frequency and resonance of lowpass filter
359

lores~ Resonant lowpass filter
See Also

biquad~ Two pole, two zero filter
buffir~ Buffer-based FIR filter
comb~ Comb filter
filtergraph~ Graphical filter editor
onepole~ Single-pole lowpass filter
reson~ Resonant bandpass filter
teeth~ Comb filter with feedforward and feedback delay control
 360

matrix~ Signal routing and
mixing matrix
The matrix~ object is an array of signal connectors and mixers (adders). It can have any number of
inlets and outlets. Signals entering at each inlet can be routed to one or more of the outlets, with a
variable amount of gain. If an outlet is connected to more than one inlet, its output signal is the
sum of the signals from the inlets.

The matrix~ object has two modes of operation: “binary” and non-binary. In binary mode, con-
nections act like simple switches, and always have unity gain. This mode is faster, but audible
clicks will occur if you're listening to the outputs of this object when connections are made and
broken. In non-binary mode, connections are gain stages, i.e. they can scale the signal by some
amount other than zero and one. They also provide an adjustable ramping time over which the
gain values are changed. This allows signals to be switched without creating audible clicks.

Input
signal In any inlet: Signals present at an inlets are sent to the outlets to which they are

connected, scaled by the gain values of the connections.

list In left inlet: A list of three ints may be used to connect inlets and outlets when the
matrix~ object is in binary mode. The first int specifies the inlet, the second int
specifies the outlet, and a third int is used to specify connection or disconnection.
If the third int is nonzero value, the inlet of the first int will be connected to the
outlet specified by the second int. A zero value for the third int in the list discon-
nects the inlet-outlet pair.

If the matrix~ object is operating in non-binary mode, A list of two ints followed
by a float sets the gain of the connection between inlet i and outlet o to the value
specified by the float.

Note: To specify the gain of individual connections, you must use three-element
list messages rather than the connect message. Connections formed with the con-
nect message always have a gain specified by the third argument initially given to
the matrix~ object. However, subsequent list messages can alter the gain of con-
nections formed with the connect message. The addition of an optional fourth ele-
ment to the list message can be used to specify a ramp time, in milliseconds, for
the individual connection (e.g., 1 2 .8 500 would connect the first inlet to the sec-
ond outlet and specify a gain of .8 and a ramp time of .5 seconds).

print In left inlet: The word print causes the current state of all matrix~ object connec-
tions to be printed in the Max window in the form of a list for each connection.
The list consists of two numbers which specify the inlet and outlet, followed by a
float which specifies the gain for the connection.

dump In left inlet: The word dump causes the current state of all matrix~ object connec-
tions to be sent out the rightmost outlet of the object in the form of a list for each
connection. The list consists of two numbers which specify the inlet and outlet,
followed by a float which specifies the gain for the connection.

clear In left inlet: The word clear removes all connections.
361

matrix~ Signal routing and
mixing matrix
connect In left inlet: The word connect, followed by one or more pairs of ints, will connect
any inlet specified by the first int from the outlet specified by the second int. Mul-
tiple disconnections may be made by adding additional int pairs to the message.
Inlets and outlets are numbered from left to right, starting at zero. For example,
the message connect 1 0 1 1 would connect the second inlet from the left to the left-
most outlet and the second outlet from the left.

disconnect In left inlet: The word disconnect, followed by one or more pairs of ints, will discon-
nect any inlet specified by the first int from the outlet specified by the second int.
Multiple disconnections may be made by adding additional int pairs to the mes-
sage.

ramp In left inlet: The word ramp, followed by a number, sets the time in milliseconds
use to change gain values when the matrix~ object is in non-binary mode. The
default millisecond value is 10.

Arguments
int Obligatory. The first argument specifies the number of inlets.

int Obligatory. The second argument specifies the number of outlets.

float Optional. If a float value is provided as a third argument, matrix~ operates in its
non-binary mode. The argument sets the gain value that will be used when con-
nections are created.

Output
signal The output signals for each outlet are the sum of their connected inputs, scaled by

the gain values of the connections.

Examples

Multichannel audio routing
 362

matrix~ Signal routing and
mixing matrix
See Also

gate~ Route a signal to one of several outlets
matrixctrl Matrix switch control
receive~ Receive signals without patch cords
selector~ Assign one of several inputs to an outlet
send~ Transmit signals without patch cords
363

 364

maximum~ Compare two signals,
output the maximum

Input
signal In left inlet: The signal is compared to a signal coming into the right inlet, or a

constant value received in the right inlet. The greater of the two values is sent out
the outlet.

In right inlet: The signal is used for comparison with the signal coming into the
left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming into
the left inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial comparison value for the signal coming into the left inlet.

If a signal is connected to the right inlet, the argument is ignored.

Output
signal The greater of the two signal values received in the left and right inlets is sent out.

Examples

Find the maximum of two signals

See Also

<=~ Is less than or equal to, comparison of two signals
>~ Is greater than, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals
==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals
minimum~ Compare two signals, output the minimum

meter~ Visual peak
level indicator
Input
signal The peak amplitude of the incoming signal is displayed by the LEDs of the on-

screen level meter.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB values
for the background color of the meter~ object. The default value is set by brgb 104
104 104.

dbperled The word dbperled, followed by a number between 1 and 12, sets the amount of sig-
nal level in deciBels represented by each LED. By default each LED represents a
3dB change in volume from its neighboring LEDs.

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB values
for the LED color for the lowest “cold” range of the meter~ object. The default
value is set by frgb 0 168 0.

interval The word interval, followed by a number, sets the update time interval, in millisec-
onds, of the meter~ display. The minimum update interval is 10 milliseconds, the
maximum is 2 seconds, and the default is 100 milliseconds. This message also sets
the rate at which meter~ sends out the peak value received in that time interval.

numhot The word numhot, followed by a number between 0 and 20, sets the total number
“hot” warning LEDs displayed on the meter~ object (corresponding to the color
set by the rgb2 message). The default number is 3.

numleds The word numleds, followed by a number between 10 and 20, sets the total number
of LEDs displayed on the meter~ object. The default number of LEDs is 12.

numtepid The word numtepid, followed by a number between 0 and 20, sets the total number
“tepid” mid-range LEDs displayed on the meter~ object (corresponding to the
color set by the rgb5 message). The default number is 3.

numwarm The word numwarm, followed by a number between 0 and 20, sets the total number
“warm” lower-mid-range LEDs displayed on the meter~ object (corresponding
to the color set by the rgb4 message). The default number is 3.

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the RGB values
for the LED color for the upper “hot” range of the meter~ object. The default
value is set by rgb2 255 153 0.

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the RGB values
for the LED color for the “over” indicator of the meter~ object. The default value is
set by rgb3 255 0 0.

rgb4 The word rgb4, followed by three numbers between 0 and 255, sets the RGB values
for the LED color for upper-middle “warm” range of the meter~ object. The
default value is set by rgb4 153 186 0.
365

meter~ Visual peak
level indicator
rgb5 The word rgb5, followed by three numbers between 0 and 255, sets the RGB values
for the LED color for the lower-middle “tepid” range of the meter~ object. The
default value is set by rgb5 217 217 0.

(mouse) When the patcher window is unlocked, you can re-orient a meter~ from horizon-
tal to vertical by dragging its resize area and changing its shape.

 Inspector
The behavior of a meter~ object is displayed and can be edited using its Inspector.
If you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any meter~ object displays the meter~
Inspector in the floating window. Selecting an object and choosing Get Info…
from the Object menu also displays the Inspector.

The meter~ Inspector lets you set the update time interval, in milliseconds, of the
display by typing a number into the Interval box. The default interval is 100 ms.

The various Appearance options in the meter~ Inspector let you set the Total
Number of LEDs displayed on the meter~ object. The meter~ object can have a
minimum of 10 and a maximum of 20 LEDs; there are 12 LEDs by default. You
can also set how much volume each LED represents by changing the dB Per LED
value. By default each LED represents a 3dB change in volume. The Number of
Hot LEDs, Number of Hot LEDs, and Number of Hot LEDs boxes let you set the
number of LEDS in each of the volume ranges, corresponding to the Warning
(Hot), Tepid and Warm colors, respectively (see Color, below). By default there are
three LEDs in each of these color regions - all remaining LEDs use the color of the
Foreground (Cold) color region.

The Color pull-down menu lets you use a swatch color picker or RGB values to
specify the colors used for display by the meter~ object. Background sets the
meter~ object’s background color. The default background color is 104 104 104.
The remaining menu choices set the colors of the various ranges of LEDs, from
lowest to highest. Foreground (Cold) sets the color for the lowest range of LEDs on
the meter~ object. The default value is 0 168 0. Tepid sets the LED color for the
lower-midrange range group of LEDs. The default value is 153 186 0. Warm sets
the LED color for the upper-mid range of LEDs. The default value is 217 217 0.
Warning (Hot) sets the LED color for the upper range of the meter~ object. The
default value is 255 153 0. Overload sets the LED color for the “over” indicator of
the meter~ object. The default value is 255 0 0.

 The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.
 366

meter~ Visual peak
level indicator
Arguments
None.

Output
float The peak (absolute) value received in the previous update interval is sent out the

outlet when audio processing is on.

Examples

meter~ displays and sends out the peak amplitude of a signal

See Also

average~ Multi-mode signal average
scope~ Signal oscilloscope
Tutorial 23 Analysis: Viewing signal data
367

 368

minimum~ Compare two signals,
output the minimum

Input
signal In left inlet: The signal is compared to a signal coming into the right inlet, or a

constant value received in the right inlet. The lesser of the two values is sent out
the outlet.

In right inlet: The signal is used for comparison with the signal coming into the
left inlet.

float or int In right inlet: A number to be used for comparison with the signal coming into
the left inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments
float or int Optional. Sets an initial comparison value for the signal coming into the left inlet.

If a signal is connected to the right inlet, the argument is ignored.

Output
signal The lesser of the two signal values received in the left and right inlets is sent out.

Examples

 Find the minimum of two signals

See Also

<=~ Is less than or equal to, comparison of two signals
>~ Is greater than, comparison of two signals
>=~ Is greater than or equal to, comparison of two signals
==~ Is equal to, comparison of two signals
!=~ Not equal to, comparison of two signals
maximum~ Compare two signals, output the maximum

minmax~ Compute the minimum and
maximum values of a signal

369

Input
signal Signal to be evaluated for maximum and minimum values.

bang Sends floating-point values corresponding to the minimum and maximum signal
values out the 3rd and 4th outputs.

reset Resets the current minimum and maximum values to the default (0).

Arguments
None.

Output
signal Out 1st outlet: Signal value which corresponds to the minimum signal value

received since startup or the last reset message.

Out 2nd outlet: Signal value which corresponds to the maximum signal value
received since startup or the last reset message.

float Out 3rd outlet: When minmax~ receives a bang message, a floating-point value
which corresponds to the minimum signal value received since startup or the last
reset message is output.

Out 4th outlet: When minmax~ receives a bang message, a floating-point value
which corresponds to the maximum signal value received since startup or the last
reset message is output.

Examples

Find the hi/low peaks of a signal

See Also

meter~ Visual peak level indicator
peakamp~ See the maximum amplitude of a signal
snapshot~ Convert signal values to numbers

 370

mstosamps~ Convert milliseconds
to samples

Input
float or int Millisecond values received in the inlet are converted to a number of samples at

the current sampling rate and sent out the object’s right outlet. The output might
contain a fractional number of samples. For example, at 44.1 kHz sampling rate,
3.2 milliseconds is 141.12 samples.

signal Incoming millisecond values in the signal are converted to a number of samples at
the current sampling rate and output as a signal out the mstosamps~ object’s left
outlet. The output may contain a fractional number of samples.

Arguments
None.

Output
signal Out left outlet: The number of samples corresponding to the millisecond values

in the input signal.

float Out right outlet: The number of samples corresponding to the millisecond value
received as a float or int in the inlet.

Examples

Time expressed in milliseconds comes out expressed in samples

See Also

dspstate~ Report current DSP settings
sampstoms~ Convert samples to milliseconds

mtof Convert a MIDI
note number to frequency

371

Input
float or int A MIDI note number value from 0 to 127. The corresponding frequency is sent

out the outlet.

Arguments
None.

Output
float The frequency corresponding to the received MIDI pitch value.

Examples

Use MIDI note number to provide frequency value for an oscillator

See Also

expr Evaluate a mathematical expression
ftom Convert frequency to a MIDI note number

 372

mute~ Disable signal processing
in a subpatch

Input
int 1 turns off the signal processing in all objects contained in the subpatch con-

nected to the mute~ object’s outlet, 0 turns it back on.

list Sending the list 1 1 to the mute~ object will mute any subpatchers of the patcher
object to which the message is sent. Similarly, sending the list 0 1 to the mute~
object will unmute any subpatchers of the patcher object.

Arguments
None.

Output
Connect the mute~ object’s outlet to any inlet of a subpatch you wish to control.
You can connect mute~ to as many subpatch objects as you wish; however, mute~
does not work with patchers inside bpatcher objects.

Examples

You can mute all processing in any patcher or other subpatch

See Also

begin~ Define a switchable part of a signal network
pass~ Eliminate noise in a muted subpatcher
Tutorial 5 Fundamentals: Turning signals on & off

noise~ White noise generator

373

Input
None.

Arguments
None.

Output
signal The noise~ object generates a signal consisting of uniformly distributed random

(white noise values between -1 and 1.

Examples

Random samples create white noise, which can be filtered in various ways

See Also

biquad~ Two-pole, two-zero filter
pink~ Pink noise generator
reson~ Resonant bandpass filter
Tutorial 3 Fundamentals: Wavetable oscillator

 374

normalize~ Scale on the basis of
maximum amplitude

Input
signal In left inlet: The input signal is normalized—scaled so that its peak amplitude is

equal to a specified maximum.

In right inlet: The maximum output amplitude; an over-all scaling of the output.

float In right inlet: The maximum output amplitude may be sent as a float instead of a
signal. If a signal is connected to the right inlet, a float received in the right inlet is
ignored.

reset In left inlet: The word reset, followed by a number, resets the maximum input
amplitude to the number. If no number follows reset, or if the number is 0, the
maximum input amplitude is set to 0.000001.

Arguments
float Optional. The initial maximum output amplitude. The default is 1.

Output
signal The input signal is scaled by the maximum output amplitude divided by the max-

imum input amplitude.

Examples

When precise scaling factor varies or is unknown, normalize~ sets peak amplitude

See Also

*~ Multiply two signals

number~ Signal monitor and
constant generator
number~ has two different display modes. In Signal Monitor Mode it displays the value of the signal
received in the left inlet. In Signal Output Mode it displays the value of the float or int most recently
received in the left inlet, or entered directly into the number~ box (the signal being sent out the left
outlet).

Input
signal Any signal, the value of which is sampled and sent out the right outlet at regular

intervals. When number~ is in Signal Monitor display mode, the signal value is
displayed.

float In left inlet: The value is sent out the left outlet as a constant signal. When num-
ber~ is in Signal Output display mode, the value is displayed. If the current ramp
time is non-zero, the output signal will ramp between its previous value and the
newly set value.

In right inlet: Sets a ramp time in milliseconds. The default time is 0.

int Converted to float.

list The first number sets the value of the signal sent out the left outlet, and the second
number sets the ramp time in milliseconds.

(mouse) Clicking on the triangular area at the left side of number~ will toggle between Sig-
nal Monitor display mode (green waveform) and Signal Output display mode
(yellow or green downward arrow). When in Signal Output display mode, click-
ing in the area that displays the number changes the value of the signal sent out the
left outlet of number~ and/or selects it for typing.

(typing) When a number~ is highlighted (indicated by a yellow downward arrow), numer-
ical keyboard input changes its value. Clicking the mouse or pressing Return or
Enter stores a pending typed number and sends it out the left outlet as the new
signal value.

allow The word allow, followed by a number, sets what display modes can be used. allow 1
restricts number~ to signal output display mode. allow 2 restricts number~ to input
monitor display mode. allow 3 allows both modes, and lets the user switch
between them by clicking on the left triangular area of number~.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB values
for the background color of the number~ box. The default value is white (brgb 255
255 255).

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB values
for the number values displayed by the number~ box. The default value is black
(frgb 0 0 0).
375

number~ Signal monitor and
constant generator
rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the RGB values
for the number values displayed by the number~ box when it is highlighted or
being updated. The default value is black (rgb2 0 0 0).

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the RGB values
for the background color of the number~ box when it is highlighted or being
updated. The default value is white (rgb3 255 255 255).

mode The word mode, followed by a number, sets the current display mode, if it is cur-
rently allowed (see the allow message). mode 1 sets signal output display mode.
mode 2 sets signal input monitor display mode.

min The word min, followed by an optional number, sets the minimum value of num-
ber~ for signal output. Note that unlike a floating-point number box, the mini-
mum value of number~ is not restricted to being an integer value. If the word min
is not followed by a number, any minimum value is removed.

max The word max, followed by an optional number, sets the maximum value of num-
ber~ for signal output. Note that unlike a floating-point number box, the maxi-
mum value of number~ is not restricted to being an integer value. If the word max
is not followed by a number, any maximum value is removed.

interval The word interval, followed by a number, sets the sampling interval in millisec-
onds. This controls the rate at which the display is updated when number~ is input
monitor display mode, as well as the rate that numbers are sent out the object’s
right outlet.

flags The word flags, followed by a number, sets characteristics of the appearance and
behavior of number~. The characteristics (which are described under Arguments.
below) are set by adding together values that designate the desiƒred options, as
follows: 4=Bold type, 64=Send on mouse-up only, 128=Can’t change with
mouse. For example, flags 196 would set all of these options.

Inspector
The behavior of a number~ object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating Inspec-
tor... from the Windows menu, selecting any number~ object in the patcher
window opens an Inspector panel which lets you change the behavior of that
object. Selecting an object and choosing Get Info… from the Object menu also
displays the Inspector.

The number~ Inspector lets you set the following attributes:

You can set the range for stored, displayed, typed, and passed-through values by
typing values into the Range Min. and Max. boxes. If the No Min. and No Max.
checkboxes are checked (the default state), the number~ objects will have their
 376

number~ Signal monitor and
constant generator
minimum and maximum values set to “None.” Unchecking these boxes sets the
minimum and maximum values to 0.

The Options section of the Inspector lets you set the display attributes of the num-
ber~ object. Other options available in the Inspector are: Bold (to display in bold
typeface), Draw Triangle (to have an arrow pointing to the number, giving it a dis-
tinctive appearance), Output Only on Mouse-Up (to send a number only when the
mouse button is released, rather than continuously), Can’t Change (to disallow
changes with the mouse or the computer keyboard), and Transparent (to display
only the number in the number~ object and not the box, so that the number box
resembles a comment object).

The Display Style pull-down menu lets you select the way that number values are
represented. Decimal is the default method of displaying numbers. Hex shows
numbers in hexadecimal, useful for MIDI-related applications. Roland Octal
shows numbers in a format used by some hardware devices where each digit
ranges from 1 to 8; 11 is 0 and 88 is 63. Binary shows numbers as ones and zeroes.
MIDI Note Names shows numbers according to their MIDI pitch value, with 60
displayed as C3. Note Names C4 is the same as MIDI Note Names except that 60 is
displayed as C4. With all display modes, numbers must be typed in the format in
which they are displayed.

Mode lets you check boxes to select Signal Monitor or Signal Output modes. Both
modes are checked by default, but at least one mode must be checked.

Interval sets the sampling interval in milliseconds. This controls the rate at which
the display is updated when number~ is input monitor display mode, as well as the
rate that numbers are sent out the object’s right outlet. The default is 250 ms.

The Color option lets you use a swatch color picker or RGB values used to display
the number~ box and its background in its normal and highlighted forms. Num-
ber sets the color for the number displayed (default 0 0 0), Background sets the
color for the number~ box object itself (default 221 221 221), Highlighted Number
sets the color of the number display when the number box is selected or its values
are being updated (default 0 0 0), and Highlighted Background sets the color of the
number~ box when it is highlighted or being updated (default 221 221 221).

The font and size of a number~ box can be changed with the Font menu.

 The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments
None.
377

number~ Signal monitor and
constant generator
Output
signal Out left outlet: When audio is on, number~ sends a constant signal out its left out-

let equal to the number most recently received in the left inlet (or entered by the
user). It sends out this value independent of its signal input, and whether or not it
is currently in Signal Output display mode. If the ramp time most recently
received in the right inlet is set to a non-zero value, the output will interpolate
between its previous value and a newly set value over the specified time.

float Out right outlet: Samples of the input signal are sent out at a rate specified by the
interval message.

Examples

Several uses for the number~ object

See Also

line~ Linear ramp generator
sig~ Constant signal of a number
snapshot~ Convert signal values to numbers
Tutorial 23 Analysis: Viewing signal data
 378

onepole~ Single-pole
lowpass filter
The onepole~ implements the simple filter equation

output = previous input + cf * (input - previous input)

where cf represents the cutoff frequency of the filter expressed in radians. The values for cf lie in the
range -1.0-0. This produces a single-pole lowpass filter with a 6dB/octave attenuation, which can
be useful to gently roll off harsh high end (e.g., the digital artifacts of downsampling). onepole~ is
equivalent to a biquad~ object with the coefficients,

[a0 = 1 + cf, a1 = 0, a2 = 0, b1 = cf, b2 = 0]

If you substitute these values into the biquad~ equation, you are left with the onepole~ object’s
algorithm. However, onepole~ will execute much faster, since biquad~ will still compute the
unused portion of its equation.

Input
signal In left inlet: Signal to be filtered.

In right inlet: A signal can be used to set the frequency for the filter, with the same
effect as a float. If a signal is connected to this inlet, its value is sampled once every
signal vector.

float In right inlet: Sets the frequency for the filter (if no signal is connected). By
default, frequency is expressed in Hz, where the allowable range is from 0 to one
fourth of the current sampling rate. For convenience, onepole~ has two additional
input modes that use the more conventional input range, 0 - 1 (see the linear and
radians messages).

clear In either inlet: Clears the internal state of onepole~. Since onepole~ does not have
the inherent instability of other filter types, this should never be necessary.

Hz In either inlet: Sets the frequency input mode to Hz (the default).

linear In either inlet: Sets the frequency input mode to linear (0 - 1). Linear mode is
simply a scaled version of the standard Hz mode, except that values in the 0-1
range traverses the full frequency range.

radians In either inlet: Sets the frequency input mode to radians (0 - 1). Radians mode
lets you set the center frequency (cf) of the equation directly—while the input has
the same range (0-1), the output has a curved frequency response that is closer to
the exponential pitch scale of the human ear.

Arguments
float Optional. Sets the center frequency for the filter, as described above.
379

onepole~ Single-pole
lowpass filter
Hz Optional. Sets the frequency input mode to Hz (the default mode - hence this is
the same as providing no mode argument).

linear Optional. Sets the frequency input mode to linear (0 - 1).

radians Optional. Sets the frequency input mode to radians (0 - 1).

Output
signal The filtered signal.

Examples

onepole~ provides efficient filtering for a simple sample player

See Also

biquad~ Two-pole, two-zero filter
reson~ Resonant bandpass filter
 380

oscbank~ Non-interpolating
oscillator bank
Input
signal or float In left inlet: Sets the frequency of the oscillator whose index is currently refer-

enced to the current floating-point value of the signal. The default value is 0.

In 2nd inlet: Sets the magnitude (amplitude) of the oscillator whose index is cur-
rently referenced.

In 3rd inlet: If frame sync is enabled using the framesync 1 message, a signal in the
range 0-1.0 sets the phase of the oscillator currently being referenced.

In 4th inlet: Sets the index of the oscillator currently being referenced.

float In 3rd inlet: A float in the range 0-1.0 sets the phase of the oscillator currently
being referenced.

clear The word clear sets the frequency of all oscillators to zero and zeros all amplitudes.

copybuf In left inlet: The word copybuf, followed by a symbol that specifies a buffer, copies
samples from the buffer into the oscbank~ object’s internal wavetable. The num-
ber of samples is set using the tabpoints message. An optional second integer argu-
ment specifies the position in the buffer at which samples are loaded (offset).

framesync The word framesync, followed by a non-zero number, enables frame synchronous
operation. When frame synchronous operation is enabled, a given index's values
will only change or begin their interpolated ramps to the next value when the
index input signal is 0 (or once per n sample frame). Otherwise, a given index's
values will change or begin their interpolated ramps to the next value when the
index input signal is equal to that index. The default is off.

freqsmooth The word freqsmooth, followed by an int, sets the number of samples across which
frequency smoothing is done. The default is 1 (no smoothing).

magsmooth The word magsmooth, followed by an int, sets the number of samples across which
magnitude (amplitude) smoothing is done on a oscillator. The default is 0 (no
amplitude smoothing).

set The word set, followed by pairs of floating-point values, sets the frequency and
amplitude of an oscillator in the oscillator bank. A list of n pairs will set the first n
oscillators in the oscbank~ object and zero the amplitude of all others.

silence The word silence zeros the amplitude of all the oscillators.

size The word size, followed by a number, sets the number of oscillators. The default is
64.

tabpoints The word tabpoints, followed by a number, sets the number of wavetable points
(samples) in the oscbank~ object’s internal wavetable. The default is 4096. The
381

oscbank~ Non-interpolating
oscillator bank
number of wavetable points should be a power or two between 22 and 216. Any
other value will be rounded to the nearest power of two.

Arguments
int Optional. The number of oscillators.

int Optional. The number of samples across which frequency smoothing is done.

int Optional. The number of samples across which amplitude smoothing is done.

int Optional. The size, in samples, of the sinewave lookup table used by the oscbank~
object. The default is 4096. Since oscbank~ uses uninterpolated oscillators, you
can choose to use a sinetable of larger size at the expense of CPU.

Note: There is only one wavetable for all oscillators in a given oscbank~ object,

Output
signal A waveform consisting of the sum of the specified frequencies and amplitudes.

Examples

oscbank~ creates a bank of oscillators that you can control with one object

See Also

ioscbank~ Interpolating oscillator bank
 382

out Message output for a patcher
loaded by poly~ or pfft~
Input
message Each out object in a patcher loaded by a poly~ or pfft~ object appears as an outlet

at the bottom of the poly~ or pfft~ object. Messages received in the out object in
the loaded patcher will be sent out the corresponding outlet of the poly~ or pfft~
object. The message outputs are a mix of the outputs of all instances of the
patcher’s outputs.

Output
None.

Arguments
int Obligatory. Each out object is identified by a unique index number which speci-

fies which message outlet in a poly~ or pfft~ object it corresponds to. The first
outlet is 1.

Output
(patcher) Any messages received by an out object in a loaded patcher appear at the signal

outlet of the poly~ or pfft~ object which corresponds to the number argument of
the out object. The signal outputs in a poly~ or pfft~ object are a mix of the out-
puts of all instances of the patcher’s outputs which correspond to that number.

Examples

Message outlets of the poly~ object correspond to the out objects inside the loaded patcher
383

out Message output for a patcher
loaded by poly~ or pfft~
See Also

in Message input for a patcher loaded by poly~ or pfft
in~ Signal input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~ or pfft~
out~ Signal output for a patcher loaded by poly~
poly~ Polyphony/DSP manager for patchers
thispoly~ Control poly~ voice allocation and muting
Tutorial 21 MIDI control: Using the poly~ object
 384

out~ Signal output for a
patcher loaded by poly~

385

Input
signal Each out~ object in a patcher loaded by the poly~ object appear as an outlet at the

bottom of the poly~ object. Signals received by the out~ object in the loaded
patcher will be sent out the corresponding outlet of the poly~ object. The message
outputs are a mix of the outputs of all instances of the patcher’s outputs.

Arguments
int Obligatory. Each out~ object is identified by a unique index number which speci-

fies which outlet in a poly~ object it corresponds to. The first outlet is 1.

Output
(patcher) Any signals received by an out~ object in a loaded patcher appear at the signal

outlet of the poly~ object which corresponds to the number argument of the out~
object. The signal outputs in a poly~ object are a mix of the outputs of all
instances of the patcher’s outputs which correspond to that number.

Examples

Signal outlets of the poly~ object correspond to the out~ objects inside the loaded patcher

See Also

in Message input for a patcher loaded by poly~ or pfft
in~ Signal input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~ or pfft~
poly~ Polyphony/DSP manager for patchers
thispoly~ Control poly~ voice allocation and muting
Tutorial 21 MIDI control: Using the poly~ object

 386

overdrive~ Soft-clipping
signal distortion

The overdrive~ object uses a waveshaping function to distort audio signals. It amplifies signals,
limiting the maximum value of the signal to ±1. Values outside of this range are removed using
“soft clipping” somewhat like that of an overdriven tube-based circuit.

Input
signal In left inlet: the signal to be distorted.

float In right inlet: The overdrive~ object accepts a floating-point “drive factor”. The
drive factor should usually be in the range 1.0-10.0. Using a factor of 1.0 creates a
linear response without distortion, and higher values increase the distortion. Val-
ues less than 1, including negative values, produce very heavily distorted signals.
Use with caution—this behavior was originally considered a bug until friends of
the object's creator insisted that it should be considered a feature and left intact.)

int Converted to float.

Arguments
float Optional. A single number can be provided to set the drive factor. If no argument

is provided, the drive factor is set to 1.0.

int Converted to float.

Output
signal The distorted signal.

Examples

Waveshape a signal similar to an overdriven amplifier

See Also

kink~ Distort a sawtooth waveform
lookup~ Transfer function lookup table

pass~ Eliminate noise
in a muted subpatcher

387

Input
signal Use a pass~ above any outlet object that will handle a signal. When the audio in

the subpatch is enabled, the pass~ object will pass its input to its output. However,
when the audio in the subpatch is disabled using mute~ or the enable 0 message to
pcontrol, pass~ will send a zero signal out its outlet.

Arguments
None.

Output
signal When the audio in a subpatch containing pass~ is enabled, the output is the same

as the input. When the audio is disabled using mute~ or the enable 0 message to
pcontrol, the output is a zero signal.

Examples

pass~ ensures that a muted signal is fully silenced

See Also

mute~ Disable signal processing in a subpatch
Tutorial 5 Fundamentals: Turning signals on & off

 388

peakamp~ See the maximum
amplitude of a signal

Input
signal In left inlet: Signal to be evaluated for its peak amplitude.

bang In left inlet: Sends out a report of the greatest (absolute value) signal amplitude
received since the previous report.

int In right inlet: Sets the interval in milliseconds for an internal clock that triggers
the automatic output of peak amplitude values from the input signal. If the inter-
val is 0, the clock stops. If it is a positive integer, the interval changes the rate of
data output. Time intervals shorter than the duration of one signal vector may be
specified, but the peak amplitude will be checked only once per vector.

float In right inlet: Same as int.

Arguments
int Optional. Sets the internal clock interval, in milliseconds. If it is 0, the internal

clock is not used, so peakamp~ will only output data when it receives a bang mes-
sage. If it is non-zero, peakamp~ will repeatedly send out the peak amplitude
received in that interval of time. By default, the interval is 0.

Output
float When peakamp~ receives a bang or its internal clock is on, the absolute value of the

peak signal value from the input signal is sent out its outlet.

Examples

Report the maximum of a signal's absolute value

See Also

meter~ Visual peak level indicator
snapshot~ Convert signal values to numbers

peek~ Read and write
sample values
The peek~ object will function even when the audio is not turned on. You can use peek~ to treat
buffer~ as a floating-point version of the Max table object in non-signal applications.

Input
int In left inlet: A sample index into the associated buffer~ object’s sample memory.

The value stored in the buffer~ at that index is sent out the peek~ object’s outlet.
However, if a value has just been received in the middle inlet, peek~ stores that
value in the buffer~ at the specified sample index, rather than sending out a num-
ber. If the number received in the left inlet specifies a sample index that does not
exist in the buffer~ object’s currently allocated memory, nothing happens.

In middle inlet: Converted to float.

In right inlet: A channel (from 1 to 4) specifying the channel of a multi-channel
buffer~ to be used for subsequent reading or writing operations.

float In left inlet: Converted to int.

In middle inlet: A sample value to be stored in the associated buffer~. The next
sample index received in the left inlet causes the sample value to be stored at the
index.

In right inlet: Converted to int.

clip In left inlet: The word clip, followed by a non-zero number, enables -1.0-1.0 clip-
ping. Clipping is enabled by default. Clipping can be disabled with the message
clip 0.

list In left inlet: The second number is stored in the associated buffer~ at the sample
index specified by the first number. If a third number is present in the list, it sets
the channel of a multi-channel buffer~ in which the value will be stored. Other-
wise, the most recently set channel is used.

Note that for int, float, and list, if the message refers to a sample index that does not
exist in the buffer~ object’s sample memory, nothing happens. You can ensure
that memory is allocated to the buffer~ by reading an existing file into it, by typ-
ing in a duration argument, or by setting its memory allocation with the size mes-
sage.

set In left inlet: The word set, followed by the name of a buffer~ object, associates
peek~ with that newly named buffer~ object.

(mouse) Double-clicking on peek~ opens an editing window where you can view the con-
tents of its associated buffer~ object.
389

peek~ Read and write
sample values
Arguments
symbol Obligatory. Names the buffer~ object whose sample memory is used by peek~ for

reading and writing.

int Optional. Following the buffer~ name, you can type in a number to specify the
channel in a multi-channel buffer~ to use for subsequent reading or writing oper-
ations. The default is 1.

int Optional. An optional third argument after buffer name and channel can be used
to enable clipping. If the third argument is a one, then -1.0-1.0 clipping is
enabled. You can also change this setting using the clip message.

Output
float The sample value in a buffer~, located at the table index specified by a float or int

received in the left inlet, is sent out the peek~ object’s outlet.

Examples

Peek at samples in a buffer~, and/or set the value of the samples

See Also

buffer~ Store audio samples
buffir~ Buffer-based FIR filter
poke~ Write sample values by index
table Store and graphically edit an array of numbers
 390

pfft~ Spectral processing
manager for patchers
The pfft~ object is designed to simplify spectral audio processing using the Fast Fourier Trans-
form (FFT). In addition to performing the FFT and the Inverse Fast Fourier Transform (IFFT),
pfft~ (with the help of its companion fftin~ and fftout~ objects) manages the necessary signal
windowing, overlapping and adding needed to create a real-time Short Term Fourier Transform
(STFT) analysis/resynthesis system.

Input
signal The number of inlets on the pfft~ object is determined by the number of fftin~

and/or in objects in the enclosed subpatch. Patchers loaded into a pfft~ object can
only be given signal inlets by fftin~ objects within the patch. See fftin~ and in for
details.

bang Patchers loaded into a pfft~ object can only accept bang messages by in objects
within the patch. The number of inputs is determined by the in objects in the
enclosed subpatch. See in for details.

mute The word mute, followed by a 1 or 0, will mute or unmute the pfft~, turning off
signal processing within the enclosed subpatch.

open The word open will open the subpatch loaded into the pfft~ object.

wclose Closes the enclosed subpatch if it is open.

Arguments
symbol Obligatory. The first argument must be the name of a subpatch which will be

loaded into the pfft~ and assigned its own signal-processing chain. The signal
processing chain connections for input and output are made using fftin~ and
fftout~ objects in the subpatcher.

int Optional. Specifies the FFT size, in samples, of the overlapped windows which are
transformed to and from the spectral domain by the FFT/IFFT. The window size
must be a power of 2, and defaults to 512. (Note: The size of the spectral “frames”
processed by the pfft~ object's subpatch will be half this size, as the 2nd half of the
spectrum is a mirror of the first, and thus redundant.)

int Optional. The third argument determines the overlap factor for FFT analysis and
resynthesis windows. The hop size (number of samples between each successive
FFT window) of Fast Fourier transforms performed is equal to the size of the Fast
Fourier transform divided by the overlap factor (e.g. if the frame size is 512 and
the overlap is set to 2 then the hop size is 256 samples). The value must be a power
of 2 and defaults to 2.

int Optional. The fourth argument specifies the start onset in samples for the Fast
Fourier transform. It must be a multiple of the current signal vector size and
defaults to 0.
391

pfft~ Spectral processing
manager for patchers
Output
signal The output is the result of the FFT-based signal processing subpatch. As with the

fft~ and ifft~ objects, pfft~ introduces a slight delay from input to output
(although it is less than half the delay than with an fft~/ifft~ combination). The I/
O delay is equal to the window size minus the hop size (e.g., for a 1024-sample
FFT window with an overlap factor of 4, the hop size is equal to 256, and the over-
all delay from input to output is 768 samples). The number of outlets is deter-
mined by the number of fftout~ and/or out objects in the loaded subpatcher.
Patchers loaded into a pfft~ object can be given outlets by fftout~ or out objects
within the patch. See fftout~ and out for details.

message Any messages received by an out object in a loaded patcher appear at the message
outlet of the pfft~ object which corresponds to the number argument of the out
object. The message outlets of a pfft~ object appear to the right of the rightmost
signal outlet.

Examples

 pfft~ loads subpatchers specially designed for frequency domain processing
 392

pfft~ Spectral processing
manager for patchers
See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
in Message input for a patcher loaded by poly~ or pfft~
out Message output for a patcher loaded by poly~ or pfft~
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 25 Analysis: Using the FFT
Tutorial 26 Frequency Domain Signal Processing with pfft~
393

phaseshift~ Phase shifter
Input
signal The signal to be shifted in phase.

float In middle inlet: Sets the frequency at which signals will be shifted by 180 degrees.
Signals below this frequency will be shifted less; signals above will be shifted
more, up to 360 degrees.

In right inlet: Sets the “Q” factor, or steepness with which the object's phase shift
changes from zero to 360 degrees. Useful values for Q are generally in the range 1.
to 10.

Arguments
float Optional. If one argument is provided, it sets the phaseshift~ object's frequency

parameter. If two arguments are provided, the first sets the frequency parameter
and the second sets the Q factor.

Output
signal The input signal, its the frequency components or harmonics shifted in phase

from zero to 360 degrees, dependent upon their frequency and the values of the
object's frequency and Q parameters.

Examples

Simulate an analog phase shifter using phaseshift~ and an LFO
 394

phaseshift~ Phase shifter
See Also

allpass~ Allpass filter
comb~ Comb filter
395

 396

phasewrap~ Wrap a signal
between -π and π

Input
signal The signal to be wrapped. If the input signal value exceeds π (3.14159), the out-

put signal value is “wrapped” to a range whose lower bound is -π (-3.14159)—
thus, a signal of increasing value outputs sawtooth waveform with -π and π as
lower and upper values.

Arguments
None.

Output
signal The wrapped input signal value.

Examples

Use phasewrap~ to make sure that signals stay within normal radial values

See Also

cartopol~ Signal Cartesian to Polar coordinate conversion
pfft~ Spectral-processing manager for Patchers
pong~ Variable range signal folding

phasor~ Sawtooth wave generator

397

Input
signal In left inlet: Sets the frequency of the sawtooth waveform.

int or float In left inlet: Sets the frequency of the sawtooth waveform. If a signal is connected
to this inlet, int and float messages are ignored.

In right inlet: Sets the phase of the waveform (from 0 to 1). The signal output con-
tinues from this value.

Arguments
int or float Optional. Sets the initial frequency of the waveform. If a signal is connected to the

left inlet, the argument is ignored.

Output
signal Sawtooth waveform that increases from 0 to 1 repeatedly at the specified fre-

quency.

Examples

A repeating ramp is useful both at audio and at sub-audio frequencies

See Also

2d.wave~ Two-dimensional wavetable
cycle~ Table lookup oscillator
line~ Linear ramp generator
trapezoid~ Trapezoidal wavetable
triangle~ Triangle/ramp wavetable
wave~ Variable-size wavetable
Tutorial 3 Analysis: Wavetable oscillator

 398

pink~ Pink noise generator

Input
None.

Arguments
None.

Output
signal The pink~ object generates a signal consisting of random value in the range -1.0-

1.0, with an even distribution of power per octave of frequency. Noise with this
power distribution is known as “pink noise”. “White noise”, as generated by the
object noise~, has an even distribution of power over all frequencies. Perceptually,
white noise sounds bright and harsh, and pink noise sounds more even and “nat-
ural”.

Examples

pink~ generates random numbers such that the frequency content is equal power per octave

See Also

noise~ White noise generator

play~ Position-based
sample playback
Input
signal In left inlet: The position (in milliseconds) into the sample memory of a buffer~

object from which to play. If the signal is increasing over time, play~ will play the
sample forward. If it is decreasing, play~ will play the sample backward. If it
remains the same, play~ outputs the same sample repeatedly, which is equivalent
to a DC offset of the sample value.

set The word set, followed by the name of a buffer~ object, uses that buffer~ for play-
back.

Arguments
symbol Obligatory. Names the buffer~ object whose sample memory is used by play~ for

playback.

int Optional, after the name argument. Specifies the number of output channels: 1, 2,
or 4. The default number of channels is one. If the buffer~ being played has fewer
channels than the number of play~ output channels, the extra channels output a
zero signal. If the buffer~ has more channels, channels are mixed.

Output
signal Sample output read from a buffer~. If play~ has two or four output channels, the

left outlet’s signal contains the left channel of the sample, and the other outlets’
signals contain the additional channels.

Examples

play~ is usually driven by a ramp signal from line~, but other signals create novel effects
399

play~ Position-based
sample playback
See Also

2d.wave~ Two-dimensional wavetable
buffer~ Store audio samples
buffir~ Buffer-based FIR filter
groove~ Variable-rate looping sample playback
record~ Record sound into a buffer
Tutorial 13 Sampling: Recording and playback
 400

plugconfig Configure the behavior
of a plug-in
The plugconfig object lets you configure your plug-in’s behavior using a script that will be familiar
to users of the env and menubar objects. The script can be accessed by double-clicking on a plug-
config object. You should only have one plugconfig object per plug-in patcher; if you have more
than one, the object that loads last will be used by the runtime plug-in environment. Since it’s not
easy to determine which object that will be, just use one.

When you double-click on plugconfig, you’ll see a short script already in place. These are the
default settings, which are in fact identical to those you’d get if your patch contained no plugconfig
object at all.

plugconfig is pretty much a read-only object when used within the runtime plug-in environment.
The environment reads the settings from the object’s script and is configured accordingly. You can
send the messages view and offset to the object to scroll the patcher to a new location, but most
plug-ins will allow the user to do this using the View menu that appears above the plug-in inter-
face.

Input
Use the capture and recall messages to build a set of interesting presets that are
embedded within your plug-in.

capture The word capture, followed by a program number (1-based) and optional symbol,
stores the current settings of all pp and plugmultiparam objects in the patcher con-
taining the plugconfig object as well as its subpatchers. The settings are stored
using a setprogram message added to the plugconfig object’s script. The parameter
numbers of the pp and plugmultiparam objects determine the order of the values
in the setprogram message. capture does not work within the runtime plug-in envi-
ronment.

recall The word recall, followed by a program number (1-based), sets all pp and plugmul-
tiparam objects to the values stored within a setprogram message in the plugconfig
object’s script. The parameter numbers of the pp and plugmultiparam objects
determine the values they are assigned from the contents of the setprogram mes-
sage.

read The word read, followed by an optional symbol, imports a file of effect programs
saved in Cubase format and loads as many as possible into the plugconfig object
for saving as setprogram messages. No checking is done to verify that the file con-
tains effect programs for a plug-in with the same unique ID code as the one in the
plugconfig object, nor is there any checking to ensure that the number of plugcon-
fig parameters match. If the symbol is present, plugconfig looks for a file with that
name. Otherwise, a standard open file dialog is displayed, allowing you select an
effect program file.

view The word view, followed by a symbol that is the name of a view defined in the plug-
config object’s script, scrolls the patcher containing the plugconfig object to the
coordinate offset assigned to the view.
401

plugconfig Configure the behavior
of a plug-in
offset The word offset, followed by numbers for the X and Y coordinates, scrolls the
patcher containing the plugconfig object to the specified coordinates.

Script Messages

Messages for View Configuration

A View is a particular configuration of the plug-in’s edit window. plugconfig lets
you control which views you’d like to see, and add views of the plug-in patcher at
various pixel offsets that you can select with the menu. These might correspond
to “pages” of controls you offer to the user.

usedefault Arguments: none

If this message appears in a script, there is no plug-in edit window. Instead, the
parameter editing features of the host environment are used. By default, usede-
fault is not present in a script, and the plug-in’s editing window appears.

useviews Arguments: 1/0 for showing views, as discussed below

useviews determines which plug-in edit window views are presented to the user.
The views are specified in the following order: Parameters (the egg sliders), Inter-
face (a Max patcher-based interface), Messages (a transcript of the Max window
useful for plug-in development), and Plug-in Info (where you can brag about
your plug-in). If the edit window is visible, the Pluggo Info view always appears.

For example, useviews 1 0 0 0 would place only the Parameters view in the plug-in
edit window’s View menu. The user would be unable to switch to another view.

defaultview Arguments: name, x offset, y offset, 1/0 for initial view

defaultview renames the Interface item in the plug-in’s View menu to the name
argument, scrolling the patcher to the specified x and y offsets when the view is
made visible. If the third argument (optional) to defaultview is non-zero, the view
is made the initial view shown when the plug-in editing window is opened. This
will be true anyway if there is no Parameters view (as specified by the useviews
message).

addview Arguments: name, x offset, y offset

addview adds an additional Interface view to the plug-in’s View menu with a speci-
fied x and y offset. This allows you to scroll the patcher to a different location to
expose a different part of the interface that might correspond to a “page” of
parameter controls. If you send the view message to plugconfig with the name an
added view as an argument, the patcher window will scroll to the view’s x and y
offset. This works in Max as well as in the run-time plug-in environment, allow-
ing you to test interface configurations.
 402

plugconfig Configure the behavior
of a plug-in
dragscroll Arguments: allow (1), disallow (0)

This message is currently unimplemented.

meter Arguments: 1 (meter the input, default), 2 (meter the output), 3 (off)

The meter message sets the initial mode of the level meter at the top of the plug-in
edit window. There is currently no way to permanently disable the meter, but it is
disabled if there isn’t enough space to display it fully because you’ve defined an
edit window that is too narrow.

Messages for Window Configuration

autosize Arguments: none

autosize, which by default is enabled, sizes the plug-in edit window to be the height
necessary to display all of the parameters, and the width of the parameter display.

setsize Arguments: width, height

setsize sets the plug-in edit window to be a specific size in pixels. If you use the
Parameters view, this size may be overridden if you’ve specified a window too nar-
row to display the egg sliders properly. Note that you should add approximately 30
pixels to the size of the patcher window in order to account for the height of the
View menu and level meter panel.

windowsize Arguments: none

windowsize sets the size of the plug-in edit window to the size of the patcher win-
dow.

Messages for Program Information

numprograms Arguments: number of programs

numprograms sets the number of stored programs for the plug-in. Programs are col-
lections of values (between 0 and 1) for each of the parameters you’ve defined
using pp and plugmultiparam objects. The default number of programs is 64, the
minimum is 1, and the maximum is 128. By default, all programs are set to 0 for
each parameter, but you can override this with the setprogram message.

setprogram Arguments: number, name, start index offset, list of values...

Normally, you won’t be typing the setprogram message into a script yourself; you’ll
send capture messages to generate it automatically. You might end up editing it
though—for example, to change the program’s name—so it’s useful to know a lit-
tle about the message’s format. setprogram lets you name a specific program and,
optionally, set some initial values for it. Program numbers (for the first argument)
403

plugconfig Configure the behavior
of a plug-in
start at 1. The name is a symbol, so if there are spaces in the name, it must be con-
tained in double quotes. The start index offset argument sets a number added to 1
that determines the starting parameter number of the parameter values listed in
the message. After this argument, one or more parameter values follow. If you
don’t supply enough values to set all the defined parameters, the additional ones
are set to 0. You don’t need to set the values at all if you want them to be 0. How-
ever, when you re-open the plugconfig script, the additional zero values will have
been added. The start index offset argument is used to handle stored programs
containing more than 256 parameters. 256 is the maximum size of a Max mes-
sage.

initialpgm Arguments: program number

The initialpgm message specifies the program that should be loaded when the plug-
in is initially opened. The default is 0, which means no program will be loaded;
instead in this case, you would use loadbang objects to set the initial values of
plug-in parameters. This behavior, however, is not consistent with the majority of
plug-ins that get set to the values in program 1 when they are loaded (since 1 is
always the initial program, unless the plug-in is being restored as part of a docu-
ment for the host application). Once you have a collection of settings that you like,
consider storing them in the first program inside plugconfig and adding an ini-
tialpgm 1 message. This has the added benefit of doing away with loadbang
objects used to initialize your parameters. Any other program number (up to the
number of programs in the plug-in specified by the numprograms message) can
also be loaded, but the current program number as shown in the host sequencer’s
window cannot be changed by the plug-in, so given that all host sequencers are
initially set to program 1, you’ll end up confusing the user if you load another
program number initially.

Messages for DSP Settings

accurate Arguments: none

The accurate message tells the runtime plug-in environment to run the Max event
(or control) scheduler at the same number-of-samples interval as the signal vec-
tor size. At 32 samples this is slightly less than 1 ms but running the scheduler this
often can have some impact on the overall CPU intensiveness of the plug-in.

By default, accurate mode is not enabled and the scheduler runs at the same inter-
val as the I/O vector size of the host environment, typically 512 or 1024 samples.
The only thing accurate mode affects is parameter updating to a plug-in, so for
example if you have a control-rate “LFO” you may want to use this mode. The use
of accurate mode will also increase the frequency of parameter updating from
control-rate scheduled plugmod processes.

sigvs default Arguments: signal vector size
 404

plugconfig Configure the behavior
of a plug-in
This message is currently ignored by the runtime plug-in environment. 32 is cur-
rently the only possible signal vector size.

oversampling Arguments: code number

This message is currently ignored by the runtime plug-in environment.

preempt Arguments: 1/0 sets priority of control messages.

This message is currently ignored by the runtime plug-in environment.

Messages for Descriptive Information

When configuring the plug-in’s informational view, you choose between using
text with infotext, a picture with infopict, or not having an info view at all with noinfo.

infotext Arguments: text as separate words and numbers

infotext allows you to describe the effect and have the text appear in the Plug-in
Info view. There is a limit of about 256 words. A special symbol <P> produces a
carriage return. Note that all commas and semicolons in the text must be pre-
ceded by a backslash. If you do not do this, you could wipe out the rest of your
script when you save it.

infopict Arguments: file name of a PICT file in the Max search path

infopict allows you to include a picture to display in the Plug-in Info view. If you
use infopict, you need to include the picture (manually) to your plug-in’s collec-
tive script. The runtime plug-in environment will be able to find the picture
within the collective.

noinfo Arguments: none

This is the default behavior for plug-in information. If neither text nor picture has
been provided as information about the effect, the Plug-in Info item does not
appear in the View menu, even if you've enabled it with the useviews command
above. If noinfo and either infopict or infotext appear together in a script, noinfo
“loses” and the info view is displayed.

welcome Arguments: text as separate words and numbers

The text arguments to the welcome message are displayed at the bottom hint area
when the user opens the plug-in editing window for the first time and looks at the
Parameters view, as well as when the cursor is moved into the top part of the win-
dow when the Parameters view is being used. If the nohintarea message is present in
the script, the lack of a hint area in the Parameters view will cause the welcome
message not to be displayed.
405

plugconfig Configure the behavior
of a plug-in
nohintarea Arguments: none

If the nohintarea message appears in a script, the runtime plug-in environment
does not provide additional space for a hint area at the bottom of the Parameters
view. If however the number of egg sliders does not completely fill the edit win-
dow because its size was defined using windowsize or setsize, a hint area will be
present.

swirl Arguments: none

The swirl message sets the hint area background to be drawn as a swirl inspired by
the pluggo packaging (which was itself inspired by the publicity poster for the
classic French film musical “Les Demoiselles de Rochefort”). The default appear-
ance of the hint area is the pain, non-swirl background. To set the swirl colors, use
hintfg and hintbg.

hintbg Arguments: red, green, and blue color components as 16-bit values

If you are offended by the yellow background color of the hint area, you can
change it to something else. As an example, a medium gray would be specified
with hintbg 40000 40000 40000, and a white background would be specified with
hintbg 65535 65535 65535.

hintfg Arguments: red, green, and blue color components as 16-bit values

When using the swirl mode for the hint area, the hintfg message specifies the
color of the dark part of the swirl. For best results, hintfg should be darker than
hintbg.

uniqueid Arguments: id1 id2 id3 (between 0 and 255)

You’ll find this message in your plugconfig script when you first open it. The argu-
ments will be three randomly generated numbers between 0 and 255, something
like three quarters of an IP address.

These numbers are used to build an ID code that will uniquely identify your plug-
in. The code is used to identify a plug-in as a pluggo-based animal as well as to
preserve plugmod connections between patchers.

You can either use the three randomly generated numbers or something inten-
tional. There are about 16 million possibilities. 0 0 0 is reserved and cannot be
used. 0 followed by two other numbers is reserved for use by Cycling ’74 and its
registered plug-in developers. You won’t need to interact with this ID code,
although you might want to know that part of it will be used as the basis for a
floating-point “patcher code” output by the plugmod object. The floating-point
value, however, will not in any way resemble the ID you choose.
 406

plugconfig Configure the behavior
of a plug-in
Arguments
None.

Output
None.

Examples

Send the capture message to plugconfig to create presets

See Also

plugmod Modify plug-in parameter values
Pluggo Tutorial P2 Enhancing the plug-in interface
Pluggo Tutorial P3 A plug-in with a Max interface
407

 408

plugin~ Define a plug-in’s
audio inputs

plugin~ and plugout~ define the signal inputs and outputs to a plug-in. You can use them within
Max as simple thru objects, feeding plugin~ a test signal and routing the output of plugout~ to a
dac~ object. When plugin~ and plugout~ are operating within the runtime environment however,
they act differently. plugin~ ignores its input and instead outputs the plug-in’s signal inputs fed to it
by the host mixer. plugout~ does not output any type of signal out its outlets; instead it feeds its
signal inputs to the plug-in’s audio outputs to the host mixer.

Input
signal In left and right inlets: When used in Max/MSP, the plugin~ object echoes its

input to its output. When used in the runtime plug-in environment, signals sent
to its inputs are ignored, and instead the audio inputs to the plug-in are copied to
the plugin~ object’s outlets.

Arguments
None. plugin~ always has two inlets and two outlets.

Output
signal When used in Max/MSP, the signal output of the plugin~ object is simply its sig-

nal input. When used in the runtime plug-in environment, the signal output will
be the left and right channels of the audio input to the plug-in from the host. If the
plug-in is inserted in a mono context, it’s possible that only the left channel will
contain the incoming audio signal and the right channel will be 0. The exact
nature of the audio input to the plug-in is up to the host mixer.

Examples

See Also

plugout~ Define a plug-in’s audio outputs

plugmidiin Receive MIDI
from a plug-in host

409

plugmidiin delivers any MIDI information targeted to the plug-in. It functions analogously to the
Max midiin object, delivering raw MIDI as a sequential byte stream. You’ll want to connect the mid-
iparse object to its outlet. MIDI information is always delivered by plugmidiin at high-priority
(interrupt) level. You may have more than one plugmidiin object in a patcher; each will output the
same information.

Input
None.

Arguments
None.

Output
int MIDI message bytes in sequential order. For instance, a note-on message on

channel 1 for note number 60 with velocity of 64 would be output as 144 followed
by 60 followed by 64.

Examples

MIDI message received from the host application are output by the plugmidiin object

See Also

midiparse Interpret raw MIDI data
plugmidiout Send MIDI to a plug-in host

 410

plugmidiout Send MIDI
to a plug-in host

plugmidiout sends MIDI information to the host, where it is routed according to the host’s current
configuration. The plug-in has no control over the routing of its MIDI output. plugmidiout is
analogous to midiout; it expects raw MIDI bytes in sequential order. You can use midiformat to
transform numbers into MIDI messages appropriate for plugmidiout.

Input
int MIDI message bytes in sequential order. For instance, a note-on message on

channel 1 for note number 60 with velocity of 64 would be sent to plugmidiout as
144 followed by 60 followed by 64.

Arguments
None.

Output
None.

Examples

See Also

midiformat Prepare data in the form of a MIDI message
plugmidiin Receive MIDI from a plug-in host

plugmod Modify plug-in
parameter values
plugmod allows a plug-in to modify the parameter values of another plug-in. It generates a pop-up
menu listing all the visible parameters of all currently loaded plug-ins. The output of this menu is
fed back to the input of the object to tell it what parameter should be modified with the numeric
input plugmod receives. Additional inlets and outlets interface with pp objects to save the object’s
connection to a particular plug-in and parameter in effect presets. This allows plugmod to recon-
nect to its target plug-in and parameter when a sequencer document is reloaded.

Input
anything In left inlet: A plug-in name followed by a parameter index sets the parameter the

plugmod object will modify with its numeric input. This plug-in and parameter
are referred to as the object’s target.

No Connection In left inlet: When the word No Connection is received, the plugmod object breaks its
connection (if any) with its current target and stops affecting the target parame-
ter. The No Connection symbol is always the first item in the menu generated by the
plugmod object’s left outlet when plug-ins are inserted or deleted in the runtime
environment.

int or float In left inlet: The value received, which is constrained between 0 and 1, is assigned
to the target plug-in and parameter.

In 2nd inlet: The value received is added to the base value of the parameter before
plugmod began to modify it.

In 3rd inlet: The value received is multiplied by the base value of the parameter
before plugmod began to modify it.

float In 4th inlet: The value is interpreted as a code to assign a new plug-in as a target.
The outlet of a pp object is normally connected to this inlet.

In right inlet: The value is interpreted as a code to assign a new parameter as a tar-
get. The outlet of a pp object is normally connected to this inlet.

Arguments
None.

Output
anything Out left outlet: Output from this outlet of the plugmod object occurs when a new

plug-in is either inserted or deleted. The messages update an attached menu
object with a new list of plug-ins and parameters that are potential targets for this
object to modify.
411

plugmod Modify plug-in
parameter values
float Out 2nd outlet: The current plug-in code is output when the object’s target
changes via a message from the attached pop-up menu object sent to the object’s
left inlet, or when a new plug-in code is received in the 4th inlet.

Out right outlet: The current parameter code is output when the object’s target
changes via a message from the attached pop-up menu object sent to the object’s
left inlet, or when a new parameter code is received in the right inlet.

Examples

See Also

menu Pop-up menu, to display and send commands
Pluggo Tutorial P5 A modulator plug-in
 412

plugmorph Generate parameter values
from programs
plugmorph allows a plug-in to modify the parameter values of another plug-in by creating a
weighted average of two or more of its effect programs. Such an average is often known as a
“morph” since it can often (but not always) create a continuous perceptual space between one
effect program and another. plugmorph generates a pop-up menu listing all currently loaded plug-
ins. The output of this menu is fed back to the input of the object, allowing the user to specify
which plug-in should be modified according to the input plugmorph receives. An additional inlet
and outlet interface with a pp object saves the object’s connection to a particular plug-in. This
allows plugmorph to reconnect to its target plug-in when a sequencer document is reloaded.

Input
anything In left inlet: A plug-in name sets what the plugmorph object will modify with its

input. This plug-in is referred to as the object’s target.

No Connection In left inlet: When the word No Connection is received, the plugmorph object breaks
its connection (if any) with its current target and will no longer change a plug-in’s
parameters. The No Connection symbol is always the first item in the menu gener-
ated by the plugmorph object’s left outlet when plug-ins are inserted or deleted in
the runtime environment.

list In left inlet: Causes plugmorph to calculate new values for the connected plug-in’s
parameters. The format of the list is an effect program number followed by a
weighting fraction. A maximum of 128 program numbers can be specified. If the
fractions do not add up to 1, they are normalized to do so. As an example, the list
1 0.5 2 0.5 would set the target plug-in’s parameters to values that were a simple
average of effect programs 1 and 2. A list of 1 0.6 2 0.6 3 0.6 4 0.6 would perform a
weighted averaging of the first four effect programs where the parameter values of
each program were represented equally. In other words, each programs’s parame-
ter value contributes 25% to the morphed value. If the target plug-in’s current
effect program is among those being morphed, an attempt is made not to store
the parameter values so the user can perform more than one morph. The gener-
ated parameter values can be stored later using the store message to plugmorph.
However, some multislider-based plug-ins defer parameter changes in such a way
that this storage prevention mechanism doesn’t work, requiring that the user set
the current effect program to a number that isn’t involved in the morph.

morphfixed In left inlet: The word morphfixed, followed by a number, determines whether
parameters marked as fixed are included in the morph. If the number is 0, fixed
parameters are not included and their values are left unchanged. If the number
not zero, fixed parameters are included. The default behavior of plugmorph is to
include fixed parameters.

morphhidden In left inlet: The word morphhidden, followed by a number, determines whether
parameters marked as hidden are included in the morph. If the number is 0, hid-
den parameters are not included and their values are left unchanged. If the num-
ber not zero, hidden parameters are included. The default behavior of plugmorph
is to include hidden parameters.
413

plugmorph Generate parameter values
from programs
store In left inlet: The word store copies the current values of the target plug-in’s param-
eters to its effect program.

float In right inlet: The value is interpreted as a code to assign a new plug-in as a target.
The outlet of a pp object is normally connected to this inlet.

Arguments
None.

Output
anything Out left outlet: Output from this outlet of the plugmorph object occurs when a

new plug-in is either inserted or deleted. The messages update an attached menu
object with a new list of plug-ins that are potential targets.

float Out 2nd outlet: When a new plug-in is selected as a target, plugmorph outputs the
number of effect programs it contains out this outlet.

Out right outlet: The current parameter code is output when the object’s plug-in
target changes via a message from the attached pop-up menu object sent to the
object’s left inlet, or when a new parameter code is received in the right inlet.
 414

plugmorph Generate parameter values
from programs
Examples

See Also

umenu Pop-up menu, to display and send commands
415

plugmultiparam Define multiple
plug-in parameters
The plugmultiparam object lets you define three or more parameters that are displayed and
changed by a single object. However, these parameters will be hidden from the Parameters view in
the plug-in window; they can only be changed by creating a Max user interface. Primarily, plug-
multiparam was designed to be used in conjunction with the multislider object; it can also work
with the plugstore object, or simply a set of cleverly organized pack and unpack objects.

Input
int The value at the specified parameter index is sent out the object’s right outlet.

list Interpreted as a set of values to be assigned to the object’s parameters, starting at
the lowest numbered parameter. If the list is longer than the number of parame-
ters defined by the object, the extra elements are ignored. The values of the list are
constrained to be within the minimum and maximum arguments of the object.

bang Sends the currently stored values out the object’s left outlet.

setmessage The word setmessage, followed by a symbol, changes the message that sets individ-
ual values when they change (for example, because the stored program was
changed). The default select message is useful in conjunction with the multislider
object.

Arguments

int Obligatory. Defines the starting parameter index to be covered by the object.

int Obligatory. Defines the number of parameter indices to be covered by the object.

float or int Optional. Sets the minimum value of the input and output for all parameters. The
default value is 0.

float or int Optional. Sets the maximum value of the input and output for all parameters.
The default value is 1.

Example: 32 parameters whose value ranges between 1 and 99 are stored starting
at parameter index 13 with the following arguments to plugmultiparam:

plugmultiparam 13 32 1 99

fixed Optional. If the word fixed appears as an argument, the parameters will not be
affected by the Randomize and Evolve commands in the parameter pop-up menu
available in the plug-in edit window when the user holds down the command key
and clicks in the interface. This is appropriate for gain parameters, where ran-
domization usually produces irritating results.

Output

list Out left outlet: The left outlet produces the current values as a list when the object
receives a bang message.
 416

plugmultiparam Define multiple
plug-in parameters
any message Out left outlet: The plugmultiparam object also produces a message to set individ-
ual values in the collection using the following format

<message name> <index> value

By default, the message name is select—this is appropriate for setting one value in
a multislider object. You can change the name to something else with the setmes-
sage message described above. The index argument starts at 0 for the first param-
eter and goes up by 1 for each subsequent parameter—it is not affected by the
starting parameter index argument to plugmultiparam. The index argument is fol-
lowed by the current parameter value.

float Out right outlet: When an int message is received, the value at the specified
parameter index is output.

Examples

See Also

plugstore Store multiple plug-in parameter values
pp Define a plug-in parameter
Pluggo Tutorial P4 Using multislider and plugmultiparam
417

 418

plugout~ Define a plug-in’s
audio outputs

plugin~ and plugout~ define the signal inputs and outputs to a plug-in. You can use them within
Max as simple thru objects, feeding plugin~ a test signal and routing the output of plugout~ to a
dac~ object. When plugin~ and plugout~ are operating within the runtime environment however,
they act differently. plugin~ ignores its input and instead outputs the plug-in’s signal inputs fed to it
by the host mixer. plugout~ does not output any type of signal out its outlets; instead it feeds its
signal inputs to the plug-in’s audio outputs to the host mixer.

Input
signal In left and right inlets: When used in Max/MSP, the plugout~ object echoes its

input to its output. When used in the runtime plug-in environment, the input to
plugout~ is copied to the audio outputs of the plug-in.

Arguments
int Optional. One or two int arguments, if present, specify the output channel desti-

nation (within the plug-in). If no arguments are present, plugout~ has two outlets
assigned to channels 1 and 2.

Output
signal When used in Max/MSP, the signal output of the plugout~ object is simply its sig-

nal input. When used in the runtime plug-in environment, the signal output to
the outlets is undefined, and the input is copied to the audio outputs of the plug-
in.

Examples

See Also

plugin~ Define a plug-in’s audio inputs

plugphasor~ Host-synchronized
sawtooth wave

419

plugphasor~ outputs an audio-rate sawtooth wave that is sample-synchronized to the beat of the
host sequencer. The waveform can be fed to other audio objects to lock audio processes to the
audio of the host.

Input
None.

Arguments
None.

Output
signal The output of plugphasor~ is analogous to phasor~: it ramps from 0 to 1.0 over

the period of a beat. If the current host environment does not support synchroni-
zation or the host’s transport is stopped, the output of plugphasor~ is a zero signal.

Examples

Drive an oscillator with a beat-synced ramp wave

See Also

plugsync~ Report host synchronization information

 420

plugreceive~ Receive audio from
another plug-in

The plugreceive~ and plugsend~ objects are used to send audio signals from one plug-in to
another. They are used in the implementation of the PluggoBus feature of many of the plug-ins
included with pluggo.

Input
signal The input to the plugreceive~ object comes from a plugsend~ object to which it is

currently connected. Initially, this will be a plugsend~ having the same name as
the plugreceive~ object’s argument.

set The word set, followed by a symbol naming a plugsend~ object, connects the
plugreceive~ object to the specified plugsend~ object(s), and the plugreceive~
object’s audio output becomes the input to the plugsend~. If the symbol doesn’t
name a plugsend~ object, the audio output becomes zero.

Arguments
symbol Obligatory. Gives the plugreceive~ object a name used for connecting with one or

more plugsend~ objects.

Output
signal The audio signal input to the plugsend~ objects connected to this object. If no

plugsend~ objects are connected, the audio output is zero.

There may be a delay of one processing (I/O) vector size of the host mixer
between the plugreceive~ output and the inputs to the plug-in which the plugre-
ceive~ is located. This occurs when a plugsend~ occurs later in the processing
chain than the plugreceive~ to which it is sending audio.

Examples

See Also

plugsend~ Send audio to another plug-in

plugsend~ Send audio to
another plug-in

421

The plugsend~ and plugreceive~ objects are used to send audio signals from one plug-in to
another. They are used in the implementation of the PluggoBus feature of many of the plug-ins
included with pluggo.

Input
signal The input to the plugsend~ object is mixed with other plugsend~ objects, which

can be in the same plug-in or a different plug-in, and is then sent out the signal
outlets of any connected plugreceive~ objects.

Arguments
symbol Obligatory. Gives the plugsend~ object a name used for connecting with other

plugsend~ and plugreceive~ objects.

Output
None.

Examples

See Also

plugreceive~ Receive audio from another plug-in

 422

plugstore Store multiple plug-in
parameter values

The plugstore object works with plugmultiparam to allow you to get values into and out of plugmul-
tiparam from multiple locations in a patcher.

Input
bang Sends the stored list out the object’s outlet.

list Stores the elements of the list (up to the size of the object) and repeats them to the
object’s outlet.

select The word select, followed by an index and value, stores the value at the specified
index (starting at 1 for the first element) and sends the stored list out the object’s
outlet.

set The word set, followed by an index and value, stores the value at the specified
index (starting at 1 for the first element) but does not output the stored list.

Arguments
int Obligatory. Sets the number of elements stored in the plugstore object’s list.

Output
list The stored list is output whenever a list, bang, or select message is received.

Examples

See Also

plugmultiparam Define multiple plug-in parameters

plugsync~ Report host
synchronization information
The plugsync~ object provides information about the current state of the host. Sample count
information is available in any host; even Max. The validity of the other information output by the
object is dependent upon what synchronization capabilities the host implements; the value from
the flags (9th) outlet tells you what information is valid. Output from plugsync~ is continuous
when the scheduler is running.

Input
None.

Arguments
None.

Output
int Out left outlet: 1 if the host’s transport is currently running; 0 if it is stopped or

paused.

int Out 2nd outlet: The current bar count in the host sequence, starting at 1 for the
first bar. If the host does not support synchronization, there is no output from this
outlet.

int Out 3rd outlet: The current beat count in the host sequence, starting at 1 for the
first beat. If the host does not support synchronization, there is no output from
this outlet.

float Out 4nd outlet: The current beat fraction, from 0 to 1.0. If the host does not sup-
port synchronization, the output is 0. If the host does not support synchroniza-
tion, there is no output from this outlet.

list Out 5th outlet: The current time signature as a list containing numerator followed
by denominator. For instance, 3/4 time would be output as the list 3 4. If the host
does not support time signature information, there is no output from this outlet.

float Out 6th outlet: The current tempo in samples per beat. This number can be con-
verted to beats per minute using the following formula: (sampling-rate / samples-
per-beat) * 60. If the host does not support synchronization, there is no output
from this outlet.

float Out 7th outlet: The current number of beats, expressed in 1 PPQ. This number
will contain a fractional part between beats. If the host does not support synchro-
nization, there is no output from this outlet.

float Out 8th outlet: The current sample count, as defined by the host.
423

plugsync~ Report host
synchronization information
int Out 9th outlet: A number representing the validity of the other information com-
ing from plugsync~. Mask with the following values to determine if the informa-
tion from plugsync~ will be valid.

Sample Count Valid 1 (always true)

Beats Valid 2 (2nd, 3rd, 4th, and 7th outlets valid)

Time Signature Valid 4 (5th outlet valid)

Tempo Valid 8 (6th outlet valid)

Transport Valid 16 (left outlet valid)

See Also

plugphasor~ Host-synchronized sawtooth wave
 424

poke~ Write sample values
by index
Input
signal In left inlet: Signal values you want to write into a buffer~.

In middle inlet: The sample index where values from the signal in the left inlet will
be written. If the signal coming into the middle inlet has a value of -1, no samples
are written.

float Like the peek~ object, poke~ can write float values into a buffer~. Note, however,
that the left two inlets are reversed on the poke~ object compared to the peek~
object.

In left inlet: Sets the value to be written into the buffer~ at the specified sample
index. If the sample index is not -1, the value is written.

In middle inlet: Converted to int.

In right inlet: Converted to int.

int In left inlet: Converted to float.

In middle inlet: Sets the sample index for writing subsequent sample values com-
ing in the left inlet. If there is a signal connected to this inlet, a float is ignored.

In right inlet: Sets the channel of the buffer~ where sample values are written. The
first (left) channel is specified as 1.

list In left inlet: A list of two or more values will write the first value at the sample
index specified by the second value. If a third value is present, it specifies the audio
channel within the buffer~ for writing the sample value.

set The word set, followed by the name of a buffer~, changes the buffer~ where poke~
will write its incoming samples.

(mouse) Double-clicking on poke~ opens an editing window where you can view the con-
tents of its associated buffer~ object.

Arguments
symbol Obligatory. Names the buffer~ where poke~ will write its incoming samples.

int Optional. Sets the channel number of a multichannel buffer~ where the samples
will be written. The default channel is 1.

Output
None.
425

poke~ Write sample values
by index
Examples

Write into a buffer~ using either signals or numbers

See Also

buffer~ Store audio samples
buffir~ Buffer-based FIR filter
peek~ Read and write sample values
 426

poltocar~ Signal Polar to Cartesian
coordinate conversion
Input
signal In left inlet: The magnitude (amplitude) of the frequency bin to be converted into

a cartesian (real/imaginary) signal pair.

 In right inlet: The phase of the frequency bin to be converted into a cartesian
(real/imaginary) signal pair.

Arguments
None.

Output
signal Out left outlet: The real part of a frequency domain signal suitable for input into

an ifft~ or fftout~ object.

Out right outlet: The imaginary part of a frequency domain signal suitable for
input into an ifft~ or fftout~ object.

Examples

poltocar~ converts amplitude/phase pairs into the Cartesian pairs that fftout~ uses
427

poltocar~ Signal Polar to Cartesian
coordinate conversion
See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
vectral~ Vector-based envelope follower
Tutorial 26 Frequency Domain Signal Processing with pfft~
 428

poly~ Polyphony/DSP
manager for patchers
The poly~ object is similar to the patcher object: it lets you encapsulate a patcher inside an object
box. However, as the name suggests, where the patcher object only has one copy of the encapsu-
lated patcher, the poly~ object allows one or more instances (copies) of a patcher to be loaded. You
specify the patcher filename and the number of instances you want as arguments to poly~. The
maximum number of instances is 1023.

The poly~ object directs signals and events (messages) received in its inlets to in and in~ objects
inside patcher instances. The patcher can also contain out and out~ objects to send signals or
events to the outlets of the poly~ object. Messages to the poly~ object control audio processing in
its loaded patcher instances and let you control the routing of events.

Input
anything The number of inlets and outlets for poly~ is determined by the patcher that is

loaded. The inlets for the patcher loaded by a poly~ object accept both signal and
event connections.

The signals are routed inside of the loaded patcher by using the in~ objects for sig-
nals or the in object for events. The number of total inlets in a poly~ object is
determined by the highest number of an in~ or in object in the loaded patcher
(e.g., if there is an in~ with argument 3 and an in with argument 4, the poly~
object will have four inlets. All the inlets accept signal connections even though
there may not be an in~ object corresponding to each inlet.

Signal inputs are fed to all instances.

any message In any inlet: Messages are sent to the in objects in the poly~ object's current target
patcher instance(s). Messages received in the left inlet of poly~ are sent to in 1
objects, messages in the second inlet are sent to in 2 objects, and so on.

signal In any inlet: Sends a signal to the corresponding in~ object in all patcher
instances. Signals connected to the left inlet of poly~ are received by all in~ 1
objects, signals connected to the second inlet of poly~ are sent to all in~ 2 objects,
and so on.

list In any inlet: If you want to send a message to a poly~ instance that starts with one
of the words used to control the poly~ object itself, prepend the message with the
word list. For example, the message list target 2 sent to the left inlet of poly~ will out-
put target 2 out the outlet of all in 1 objects, rather than changing the current target
instance to the second patcher.

busymap In left inlet: The word busymap, followed by a number which specifies a message
outlet number, will report voice busy states out the specified message outlet of the
poly~ object.

down In left inlet: The word down, followed by a number which is a power of 2, specifies
that upsampling by the designated power of two is to be done on the currently
loaded patcher. The message down 2 specifies downsampling by a factor of 2 (e.g.,
429

poly~ Polyphony/DSP
manager for patchers
22050 Hz at a sampling rate of 44100 Hz). The new sampling rate used by the
patcher will be set on the next compilation of the DSP chain; the down message
does not force a recompilation of the DSP chain.

midinote In left inlet: The word midinote, followed by one or more numbers, will send the
data to the first in object of the first instance of the loaded patcher that has
received a note-on message without a corresponding note-off message. The first
number after the word midinote is the note number, followed by the velocity. As an
example, sending midinote 60 64 to a poly~ with two instances will mark the first
one busy. A subsequent midinote 67 64 will be directed to the second patcher
instance. Once a midinote 60 0 is received by the poly~ object, it is sent to the first
instance (since poly~ keeps track of which instance received the note-on mes-
sage). Similarly, a midinote 67 0 is directed to the second instance.

mute In left inlet: The word mute, followed by a number and a zero or one, will turn sig-
nal processing off for the specified instance of a patcher loaded by the poly~ object
and send a bang message to the thispoly~ object for the specified instance. When
the second number is a 1 processing in the patcher instance is turned off (muted).
When the second number is a 0, the processing in the patcher instance is turned
on. The message mute 0 1 mutes all instances, and mute 0 0 turns on signal process-
ing for all instances of the patcher.

mutemap In left inlet: The word mutemap, followed by a number which specifies a message
outlet number, will report voice mutes out the specified message outlet of the
poly~ object.

note In left inlet: The word note, followed by a message, will send the data to the first in
object of the first instance of the patcher that has not marked itself “busy” by send-
ing a 1 to a thispoly~ object inside the patcher instance.

open In left inlet: The word open, followed by a number, opens the specified instance of
the patcher. You can view the activity of any instance of the patcher up to the
number of voices (set by the voices message or by an argument to the poly~
object). You can use this message to view an individual instance of the patcher at
work. With no arguments, the open message opens the instance that is currently
the target (see the target message below).

steal In left inlet: The word steal, followed by a zero or one, toggles voice stealing. If voice
stealing is set using the steal 1 message, the poly~ object sends the data from note
or midinote to instances that are still marked “busy” — this can result in clicks
depending on how the instances handle the interruption. The default is 0 (voice
stealing off).

target In left inlet: The word target, followed by a number, specifies the poly~ instance
that will receive subsequent messages (other than messages specifically used by
the poly~ object itself) arriving at the poly~ object's inlets. target 0 turns off input
to all instances. target 1 routes messages to the first instance, etc.
 430

poly~ Polyphony/DSP
manager for patchers
voices In left inlet: The word voices, followed by a number, changes the number of
instances (copies) of the loaded patcher. Instances of the patcher are loaded or
deleted as needed. The maximum number of instances is 1023.

up In left inlet: The word up, followed by a number which is a power of 2, specifies
that upsampling by the designated power of two is to be done on the currently
loaded patcher. The message up 2 specifies upsampling by a factor of 2 (e.g., 88200
Hz at a sampling rate of 44100 Hz). The new sampling rate used by the patcher
will be set on the next compilation of the DSP chain. The up message does not
force a recompilation of the DSP chain.

wclose In left inlet: The word wclose, followed by a number, will close the window which
contains the instance of the loaded patcher identified by the numbered index. It is
the complement to the open message. When used without the number argument,
wclose will close the patcher window with the highest numbered index.

 vs In left inlet: The word vs, followed by a number which is a power of 2 in the range
2-2048, specifies the signal vector size for the poly~ object’s loaded patch. The sig-
nal vector size will be set on the next compilation of the DSP chain. The vs mes-
sage does not force a recompilation of the DSP chain. vs 0 specifies no fixed vector
size. The default is the current signal vector size.

Arguments
symbol Obligatory. The first argument must be the name of a patcher.

Note: Unlike the patcher object, a subpatch window is not automatically opened
for editing when a patcher argument is supplied for the poly~ object; the patcher
containing the object must already exist and be found in the Max/MSP search
path.

int Optional. After the patcher name argument, the number of instances of the
loaded patcher (which correspond to the number of available “voices”) is speci-
fied. The default value is 1, and the maximum number of instances is 1023. The
number of available voices may be dynamically changed by using the voices mes-
sage.

local Optional. The word local, followed by a zero or one, toggles local scheduling for the
poly~ object’s loaded patcher. Local scheduling means that the poly~ object main-
tains its own scheduler that runs during its audio processing rather than using the
global Max scheduler. This allows finer resolution for events generated by multi-
ple patcher instances. However, no scheduling occurs if audio processing is
turned off, either globally or locally for the poly~ object or one or more of its
instances. The default is off (local 0). Local scheduling cannot be changed by send-
431

poly~ Polyphony/DSP
manager for patchers
ing messages to the poly~ object. Scheduler locality is permanent for any patcher
which is loaded.

up Optional. The word up, followed by a number which is a power of 2, specifies that
upsampling by the designated power of two is to be done on the currently loaded
patcher. The message up 2 specifies upsampling by a factor of 2 (e.g., 88200 Hz at a
sampling rate of 44100 Hz). Although both up and down are permissible argu-
ments to the poly~ object, the down message takes precedence over up.

down Optional. The word down, followed by a number which is a power of 2, specifies
that downsampling by the designated power of two is to be done on the currently
loaded patcher. The message down 2 specifies downsampling by a factor of 2 (e.g.,
22050 Hz at a sampling rate of 44100 Hz). Although both up and down are permis-
sible arguments to the poly~ object, the down message takes precedence over up.

args Optional. The word args can be used to initialize any pound-sign arguments (e.g.,
#1) in the loaded patcher. If used, the args argument must be the last argument
word used—everything which appears after the word args will be treated as an
argument value.

Output
anything The number of outlets of a poly~ object is determined by the sum of the highest

argument numbers of the out and out~ objects in the loaded patcher. For
instance, if there is an out 3 object and an out~ 2 object, the poly~ object will have
five outlets. The signal outputs corresponding to the out~ objects are leftmost in
the poly~ object, followed by the event outlets corresponding to the out objects.

Signals sent to the inlet of out~ objects in each patcher instance are mixed if there
is more than one instance and appear at the corresponding outlets of the poly~
object.

Examples

The poly~ object manages multiple instances of a subpatch
 432

poly~ Polyphony/DSP
manager for patchers
See Also

in Message input for a patcher loaded by poly~
in~ Signal input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~
out~ Signal output for a patcher loaded by poly~
patcher Create a subpatch within a patch
thispoly~ Control poly~ voice allocation and muting
Tutorial 20 MIDI control: Sampler
Tutorial 21 MIDI control: Using the poly~ object
433

pong~ Variable range
signal folding
Input
signal or float In left inlet: All incoming signal or float values which exceed the high or low value

ranges specified by arguments to the pong~ object are either folded back into this
range (i.e., values greater than one are reduced by one plus the amount that they
exceed one, and negative values are handled similarly) or wrapped (i.e., values
greater than one are reduced by two, and negative values are increased by two),
according to the mode of the pong~ object (see the mode message below).

In center or right inlet: The pong~ objects accepts low and high range values for
the range outside of which folding occurs. If the pong~ object has either one or no
arguments, pong~ will have two inlets. The right inlet is used to set the high range
value above which signal folding occurs, the low range value is assumed to be
zero.

If the pong~ object has two arguments, the object has three inlets. The center inlet
specifies the low value range below which folding occurs, and the right inlet spec-
ifies the high range limit. The default object has no arguments, and the right inlet
specifies the upper value.

If the current low range value is greater than the high range value, their behavior is
swapped.

mode The word mode, followed by a 0 or 1, sets the folding mode of the pong~ object.

pong 0 sets the pong~ object to signal folding. Values greater than one are reduced
by one plus the amount that they exceed one, and negative values are handled
similarly. This is the default mode of the object.

pong 1 sets the pong~ object to signal wrapping. Values greater than one are reduced
by two, and negative values are increased by two.

Arguments
int Optional. An optional argument is used to set the mode of the pong~ A 0 sets sig-

nal folding (the default), and a 1 sets signal wrapping (see the mode message,
above).

float Optional. When used with the optional mode argument, the low and high range
values for the pong~ objects can be specified by two additional float arguments. If
only one argument is given following the mode argument (e.g., pong~ 0 .1), it
specifies the low range value of the pong~ object above which folding occurs, and
the high range value is set to 1.0 (the default). If two arguments are present, the
first argument specifies the low range value and the second argument specifies the
high range value.
 434

pong~ Variable range
signal folding
Output
signal The folded signal or float value.

Examples

pong~ distorts a signal by folding it or wrapping it around an upper and lower threshold level

See Also

phasewrap~ Wrap a signal between -π and π
435

 436

pow~ Signal power function

pow~ raises the base value (set in the right inlet) to the power of the exponent (set in the left inlet).
Either inlet can receive a signal, float or int.

Input
signal In left inlet: Sets the exponent.

In right inlet: Sets the base value.

float or int In left inlet: Sets the exponent. If there is a signal connected to the left inlet, a num-
ber received in the left inlet is ignored.

In right inlet: Sets the base value. If there is a signal connected to the right inlet, a
number received in the right inlet is ignored.

Arguments
float or int Optional. Sets the base value. The default value is 0. If a signal is connected to the

right inlet, the argument is ignored.

Output
signal The base value (from the right inlet) raised to the exponent (from the left inlet).

Examples

Computes the mathematical expression xy for converting to logarithmic or exponential scale

See Also

log~ Logarithm of a signal
curve~ Exponential ramp generator

pp Define a
plug-in parameter
The pp object (an abbreviation for plug-in parameter) defines plug-in parameters. It has a number
of optional arguments that let you define the parameter minimum and maximum, hide the
parameter from display, set the color of the egg slider associated with it, etc. You connect the out-
put of the pp object to something you want to control with a stored parameter. If your plug-in will
use a Max patcher interface, you need to connect the interface element that will change the param-
eter’s value to the inlet of the pp object. The pp object will send new parameter values out its outlet
at various times: when you move an egg slider, when the user switches to a new effect program,
and when the host mixer is automating the parameter changes of your plug-in.

Internally, the pp object and the runtime plug-in environment store values between 0 and 1.0. By
giving the pp object optional arguments for minimum and maximum, you can store and receive
any range of values and the object will convert between the range you want and the internal repre-
sentation. If for some reason you want to know the internal 0-1.0 representation, you can get it
from the object’s right outlet. If you want to send a value that is based on the internal 0-1.0 repre-
sentation, use the rawfloat message.

Input
bang Sends the current value of the parameter out the object’s right outlet in its internal

(unscaled) form between 0 and 1.0, then out the object’s left outlet scaled by the
object’s minimum and maximum.

float or int In left inlet: Sets the current value of the parameter and then sends the new value
out the right and left outlets as described above for the bang message. The incom-
ing number is constrained between the minimum and maximum values of the
object.

float or int In right inlet: Sets the current value of the parameter without any output. The
incoming number is constrained between the minimum and maximum values of
the object.

open Same as choosing Get Info… from the Object menu.

text The word text, followed by a single symbol, allows you to set the text displayed in
the Parameters view of the plug-in edit window when the user moves the mouse
over the egg slider corresponding to the parameter.

rawfloat The word rawfloat, followed by a number between 0 and 1.0 sets the current
parameter value to the number without scaling it by the object’s minimum and
maximum. The value is then send out the right and left outlets of the object as
described above for the bang message.

(Get Info...) Choosing Get Info… from the Object menu opens an Inspector for editing a
description of the parameter displayed in the Parameters view of the plug-in edit
window when the user moves the cursor over the egg slider corresponding to the
parameter.
437

pp Define a
plug-in parameter
Inspector
The behavior of a pp object is displayed and can be edited using its Inspector. If
you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any pp object displays the pp Inspector in the
floating window. Selecting an object and choosing Get Info… from the Object
menu also displays the Inspector.

Typing in the Describe Parameter text area specifies the parameter description.

 The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments
The pp object takes a number of arguments. They are listed in the order that they need to appear.

int Obligatory. The first argument sets the parameter number. The first parameter is
1. Parameter numbers should be consecutive (but they need not be), and two pp
objects should not have the same parameter number. An error will be reported in
the Messages view of the runtime plug-in environment if duplicate parameter
numbers are encountered.

hidden Optional. If the word hidden appears as an argument, the parameter will not be
given an egg slider in the plug-in edit window and will not appear in the pop-up
menu generated by the plugmod object.

fixed Optional. If the word fixed appears as an argument, the parameter will not be
affected by the Randomize and Evolve commands in the parameter pop-up menu
available in the plug-in edit window when the user holds down the command key
and clicks in the interface. This is appropriate for gain parameters, where ran-
domization usually produces irritating results.

c2-c5 Optional. If c2, c3, c4,or c5 appears as argument, the color of the egg slider is set to
something other than the usual purple. Currently c2 is Wild Cherry, c3 is Tur-
quoise, c4 is Harvest Gold, and c5 is Peaceful Orange.

symbol Optional. The next symbol after any of the optional keywords names the parame-
ter. This name appears in the Name column of the Parameters view and in the
pop-up menu generated by the plugmod object.

float or int Optional. After the parameter name, a number sets the minimum value of the
parameter. The minimum and maximum values determine the range of values
that are sent into and out of the pp object’s outlets, as well as the displayed value in
the Parameters view. The type of the minimum value determines the type of the
 438

pp Define a
plug-in parameter
parameter values the object accepts and outputs. If the minimum value is an inte-
ger, the parameters will interpreted and output as integers. If the minimum value
is a float, the parameters will be interpreted and output as floats.

float or int Optional. After the minimum value, a number sets the maximum value of the
parameter. The minimum and maximum values determine the range of values
that are sent into and out of the pp object’s outlets, as well as the displayed value in
the Parameters view.

symbol Optional. After the minimum and maximum values, a symbol sets the label used
to display the units of the parameter. Examples include Hz for frequency, dB for
amplitude, and ms for milliseconds.

choices Optional. If the word choices appears after the minimum and maximum values,
subsequent symbol arguments are taken as a list of discrete settings for the object
and are displayed as such in the Parameters view. As an example pp 1 Mode 0 3
choices Thin Medium Fat would divide the parameter space into three values. 0 (any-
thing less than 0.33) would correspond to Thin, 0.5 (and anything between 0.33
and 0.67) would correspond to Medium, and 1 (and anything between 0.67 and
1.0) would correspond to Fat. Only the name of the choice, rather than the actual
value of the parameter, is displayed in the Parameters view.

dB Optional. If the word choices does not appear as argument, the word dB can be
used to specify that the value of the parameter be displayed in decibel notation,
where 1.0 is 0 dB and 0.0 is negative infinity dB.

Output
int or float Out left outlet: The scaled value of the parameter is output when it is changed

within the runtime environment or when a bang, int, float, or rawfloat message is
received in the object’s inlet. The parameter value can be changed in the runtime
environment in the following ways: the user moves an egg slider, the parameter is
being automated by the host mixer, or the user has selected a new effect program
for the plug-in within the host mixer.

float Out right outlet: The unscaled value of the parameter is output when it is changed
by the runtime environment or when a bang, int, float, or rawfloat message is
received in the object’s inlet. You might use this value if you want to use a different
value in your plug-in’s computation than you display to the user.
439

pp Define a
plug-in parameter
Examples

See Also

plugmultiparam Define multiple plug-in parameters
plugstore Store multiple plug-in parameter values
 440

pptempo Define plug-in tempo
and sync parameters
Input
bang Sends the current value of the mode parameter (0 to 3) out the object’s right outlet

and then sends the current value of the tempo parameter out the object’s left out-
let.

int In left inlet: Sets the current value of the tempo parameter and then sends the new
value out left outlet. The incoming number is constrained between the minimum
and maximum values of the object.

In right inlet: Sets the current value of the mode parameter and then sends the
new value out the right outlet. The number is constrained between 0 and 3. Mode
values are as follows:

Value Description

0 Free Mode. If there is an egg slider display associated with this parameter,
it is disabled. It's assumed that another parameter will set the “tempo” in
units of milliseconds or Hertz.

1 Host Mode. If there is an egg slider display associated with this parameter,
it is enabled but the user cannot change it. Instead the tempo is set by the
host and merely displayed by the slider. The patch should enable syn-
chronizing to the host in some way (probably by using the plugsync~ or
plugphasor~ objects).

2 PluggoSync Mode. This mode functions similarly to Host mode in that the
egg slider is enabled but cannot be changed by the user. Instead the tempo
is set by the host and merely displayed by the slider. The patch should
enable synchronizing to PluggoSync in some way.

3 User-Defined Tempo (UDT) Mode. In this mode, there is no synchroniza-
tion and the user can change the tempo slider to any desired value. The
patch should use this value to calculate some sort of time-based behavior.

set In right inlet: The word set, followed by a number, sets the sync mode parameter
to the number but does not output the sync mode and the tempo.

rawfloat In left inlet: The word rawfloat, followed by a number between 0 and 1, sets the
tempo to a value scaled between the minimum and maximum values scaled by
the number. For example, if the minimum tempo were 100 and the maximum
were 200, the message rawfloat 0.5 would set the tempo to 150.

In right inlet: The word rawfloat, followed by a number between 0 and 1, sets the
sync mode parameter to a value based on multiplying the number by 3 and trun-
cating. Numbers below 0.33 set the sync mode to 0 (Free), numbers between 0.33
and 0.66 set it to Host, numbers at or above 0.67 and less than 1 set it to Plug-
goSync, and numbers equal to 1 set it to User-Defined Tempo.
441

pptempo Define plug-in tempo
and sync parameters
rawlist The word rawlist, followed by two numbers, is equivalent to sending the rawfloat
message with the first number to the left inlet and the rawfloat message with the
second number to the right inlet.

(Get Info...) Choosing Get Info… from the Object menu opens an Inspector for editing a
description of the parameter displayed in the Parameters view of the plug-in edit
window when the user moves the cursor over the egg slider corresponding to the
parameter.

Inspector
A parameter description can be assigned to a pptempo object and can be edited
using its Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any pptempo object dis-
plays the pptempo Inspector in the floating window. Selecting an object and
choosing Get Info… from the Object menu also displays the Inspector.

Typing in the Describe Parameter text area specifies the parameter description.

 The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments
int Obligatory. A number greater than or equal to 1 sets the parameter index of the

tempo parameter.

int Obligatory. A number greater than or equal to 1 sets the parameter index of the
sync mode parameter.

hidden Optional. If the word hidden appears as an argument, the parameter will not be
given an egg slider in the plug-in edit window and will not appear in the pop-up
menu generated by the plugmod object.

fixed Optional. If the word fixed appears as an argument, the parameter will not be
affected by the Randomize and Evolve commands in the parameter pop-up menu
available in the plug-in edit window when the user holds down the command key
and clicks in the interface.

c2-c5 Optional. If c2, c3, c4, or c5 appears as argument, the color of the egg slider is set to
something other than the usual purple. Currently c2 is Wild Cherry, c3 is Tur-
quoise, c4 is Harvest Gold, and c5 is Peaceful Orange.

symbol Optional. The next symbol after any of the optional keywords names the tempo
parameter. This name appears in the Name column of the Parameters view and in
 442

pptempo Define plug-in tempo
and sync parameters
the pop-up menu generated by the plugmod object. The name of the sync mode
parameter will be the name of the tempo parameter followed by the word mode.
The default parameter name is ParamN, where N is the index assigned to the
tempo parameter by the first argument to pptempo.

float or int Optional. After the parameter name, a number sets the minimum value of the
parameter. The minimum and maximum values determine the range of values
that are sent into and out of the pptempo object's left inlet and outlet, as well as the
displayed value in the Parameters view of the plug-in edit window. The type of the
minimum value determines the type of the parameter values the object accepts
and outputs. If the minimum value is an integer, the parameters will interpreted
and output as integers. If the minimum value is a float, the parameters will be
interpreted and output as floats.

float or int Optional. After the minimum value, a number sets the maximum value of the
parameter. The minimum and maximum values determine the range of values
that are sent into and out of the pptempo object's left inlet and outlet, as well as the
displayed value in the Parameters view of the plug-in edit window.

(Get Info...) Optional. Choosing Get Info… from the Object menu opens an Inspector for
editing a description of the parameter that is displayed in the Parameters view of
the plug-in edit window when the user moves the cursor over the egg slider corre-
sponding to the parameter.

Output
float or int Out left outlet: The scaled value of the tempo parameter is output when it is

changed within the runtime environment or when a bang, int, float, or rawfloat mes-
sage is received in the object's inlets. The parameter value can be changed in the
runtime environment in the following ways: the user moves an egg slider, the
parameter is being automated by the host mixer, or the user has selected a new
effect program for the plug-in within the host mixer.

Out right outlet: The value of the sync mode parameter, between 0 and 3, when
the parameter is changed within the runtime environment, an int, float, or rawfloat
message is received in the object's right inlet, or a bang message is received in the
object's inlets. The modes are described above in the Input section.
443

pptempo Define plug-in tempo
and sync parameters
Examples

pptempo provides tempo and synchronization information to pptime

See Also

pp Define a plug-in parameter
pptime Define a time-based plug-in parameter
 444

pptime Define a time-based
plug-in parameter
The pptime object defines time-based plug-in parameters for use in plug-ins which provide syn-
chronization with a host sequencing application. Like the pp object, pptime has a number of
optional arguments that let you define the parameter and control the appearance when using the
generic plug-in interface.

The pptime object supports the four modes of host synchronization. The functionality of the
object varies according to its mode of operation. In Free mode, pptime works like pp for the ms/Hz
parameter using the leftmost inlet and outlet. In Host sync mode and Pluggo Sync mode, the egg-
slider display changes to a smaller slider plus a unit value pop-up menu. When a change to either
the slider or menu is made, the beat value output (rightmost) produces a value you can feed to a
rate~ object. The User-Defined Tempo mode expects a tempo value to be fed to pptime via the tempo
message (you can use pptempo for this). pptime then calculates the ms/Hz value based on the cur-
rent tempo, unit multiplier, and unit value and outputs the value out the leftmost outlet.

Input
float or int In left inlet: Sets the parameter indices for the ms/Hz value.

In second inlet: Sets the unit multiplier value. Values are in the range 0.0-15.0.

In third inlet: Sets the unit index. The unit index is expressed in terms of float or
int values between 0 and 18, with each number representing a unit of musical sub-
division. The unit indices are defined as follows:

unit indexnote value
0 1
1 1/2
2 1/2. (dotted half)
3 1/2t (1/2 triplet)
4 1/4
5 1/4. (dotted 1/4)
6 1/4t (1/4 triplet)
7 1/8
8 1/8. (dotted 1/8)
9 1/8t (1/8 triplet)
10 1/16
11 1/16. (dotted 1/16)
12 1/16t (1/16 triplet)
13 1/32
14 1/32. (dotted 1/32)
15 1/32 (1/32 triplet)
16 1/64
17 1/64. (dotted 1/64)
18 1/64 (1/64 triplet)

In fourth inlet: Sets the unit value input.

bang Sends the current value of the parameter out the object’s left outlet.
445

pptime Define a time-based
plug-in parameter
mode In left inlet: The word mode, followed a number in the range 0-3, specifies the host
sync mode. Host sync modes are defined as follows: 0=Free, 1=Host Sync,
2=Pluggo Sync, 3=User-Defined Tempo. The default is 1 (Free mode).

open Same as choosing Get Info… from the Object menu.

rawfloat The word rawfloat, followed by a number between 0 and 1.0 sets the current
parameter value to the number without scaling it by the object’s minimum and
maximum. The value is then send out the right and left outlets of the object as
described above for the bang message.

timesig In left inlet: The word timesig, followed by two numbers, are used to specify the
time signature. The time signature (composed of a numerator and denominator)
is used to calculate the beat value in sync modes and the ms/Hz value in User-
Defined Tempo mode. This list can be fed from the output of the plugsync~
object. The default is 4/4 (timesig 4 4).

tempo In left inlet: If the pptime object is in User-determined Tempo mode, the word
tempo, followed a number, specifies the current tempo, and send the ms/Hz value
associated with that tempo out the left outlet.

(Get Info...) Choosing Get Info… from the Object menu opens an Inspector window for
editing a description of the parameter that is displayed in the Parameters view of
the plug-in edit window when the user moves the cursor over the egg slider corre-
sponding to the parameter. This command is not available in the runtime plug-in
environment.

Inspector
A parameter description can be assigned to a pptime object and can be edited
using its Inspector. If you have enabled the floating inspector by choosing Show
Floating Inspector from the Windows menu, selecting any pptime object dis-
plays the pptime Inspector in the floating window. Selecting an object and choos-
ing Get Info… from the Object menu also displays the Inspector.

Typing in the Describe Parameter text area specifies the parameter description.

 The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments
The pptime object takes three required arguments plus numerous optional ones.
They are listed in the order that they need to appear.
 446

pptime Define a time-based
plug-in parameter
float Obligatory. The three required float arguments are the parameter indices for the
ms/Hz value, the multiplier value, and the unit index.

hidden Optional. If the word hidden appears as an argument, the parameter will not be
given an egg slider in the plug-in edit window and will not appear in the pop-up
menu generated by the plugmod object.

fixed Optional. If the word fixed appears as an argument, the parameter will not be
affected by the Randomize and Evolve commands in the parameter pop-up menu
available in the plug-in edit window when the user holds down the command key
and clicks in the interface. This is appropriate for gain parameters, where ran-
domization usually produces irritating results.

c2-c4 Optional. If c2, c3, or c4 appears as argument, the color of the egg slider is set to
something other than the usual purple. Currently c2 is Wild Cherry, c3 is Tur-
quoise, and c4 is Harvest Gold.

symbol Optional. The next symbol after any of the optional keywords names the parame-
ter. This name appears in the Name column of the Parameters view and in the
pop-up menu generated by the plugmod object.

float or int Optional. After the parameter name, a number sets the minimum value of the
parameter. The minimum and maximum values determine the range of values
that are sent into and out of the pptime object’s outlets, as well as the displayed
value in the Parameters view. The type of the minimum value determines the type
of the parameter values the object accepts and outputs. If the minimum value is
an integer, the parameters will interpreted and output as integers. If the minimum
value is a float, the parameters will be interpreted and output as floats.

float or int Optional. After the minimum value, a number sets the maximum value of the
parameter. The minimum and maximum values determine the range of values
that are sent into and out of the pptime object’s outlets, as well as the displayed
value in the Parameters view.

symbol Optional. After the minimum and maximum values, a symbol sets the label used
to display the units of the parameter. Examples include Hz for frequency, dB for
amplitude, and ms for milliseconds.

Output
int or float Out left outlet: The scaled value of the parameter is output when it is changed

within the runtime environment or when a bang, int, float, or rawfloat message is
received in the object’s inlet. The parameter value can be changed in the runtime
environment in the following ways: the user moves an egg slider, the parameter is
being automated by the host mixer, or the user has selected a new effect program
for the plug-in within the host mixer.
447

pptime Define a time-based
plug-in parameter
Out second outlet: The unit multiplier value. Values are in the range 0.0-15.0.

Out third outlet: The unit index. The unit index is expressed in terms of float or
int values between 0 and 18

Out fourth Outlet: The beat value output.

Examples

Use pptime to control beat- and/or time-syncronized parameters

See Also

pp Define a plug-in parameter
pptempo Define plug-in tempo and sync parameters
 448

rampsmooth~ Smooth an
incoming signal

449

Input
signal or float A signal or value to be smoothed. Each time an incoming value changes, the

rampsmooth~ object begins a linear ramp over a specified number of samples to
reach the new value.

ramp In left inlet: The word ramp, followed by a number, specifies the number of sam-
ples over which an signal will be smoothed. Each time an incoming value
changes, the rampsmooth~ object begins a linear ramp of the specified number of
samples to reach the new value. The default value is 0.

rampdown In left inlet: The word rampdown, followed by a number, specifies the number of
samples over which an signal will be smoothed when an incoming value less than
the current value arrives.

rampup In left inlet: The word rampup, followed by a number, specifies the number of sam-
ples over which an signal will be smoothed when an incoming value greater than
the current value arrives.

Arguments
int Optional. The number of samples across which to generate a ramp up or ramp

down can be specified by a pair of numbers.

Examples

 rampsmooth~ performs linear smoothing on an input signal

See Also

slide~ Filter a signal logarithmically

 450

rand~ Band-limited
random signal

Input
signal The frequency at which a new random number between -1 and 1 is generated.

rand~ interpolates linearly between random values chosen at the specified rate.

float or int Same as signal. If there is a signal connected to the inlet, a float or int is ignored.

Arguments
float or int Optional. Sets the initial frequency. The default value is 0. If a signal is connected

to the inlet, the argument is ignored.

Output
signal A signal consisting of line segments between random values in the range -1 to 1.

The random values occur at the frequency specified by the input.

Examples

Use rand~ to create roughly band-limited noise, or as a control signal to create random variation

See Also

line~ Linear ramp generator
noise~ White noise generator
pink~ Pink noise generator

rate~ Time-scale the output
of a phasor~
Input
signal In left inlet: An input signal from a phasor~ object. The rate~ object time scales

the input signal from a phasor~ by a multiplier value. The multiplier value can be
specified as an argument or received as a float to the rate~ object’s right inlet.

float In left inlet: Sets the phase value for the rate~ object’s signal output.

In right inlet: The signal multiplier value used to scale the phasor~ signal input.
Float values less than 1.0 create several ramps per phase cycle. Numbers greater
than 1.0 create fewer ramps. This can be useful for synchronizing multiple pro-
cesses to a single reference phasor~ object, preserving their ratio relationships.

goto In left inlet: The word goto, followed by a float, causes the rate~ object to jump
immediately to the specified value. An optional second argument may be used to
specify the time at which to jump to the value (e.g., goto 1.0 .5 will output a value of
1.0 at the halfway point of the phasor~ object’s input signal ramp).

reset In left inlet: The word reset will lock the output to the input on its next reset. It is
equivalent to the message goto 0. 0.

sync In left inlet: The word sync, followed by a number between 0 and 2 or the words
cycle, lock, or off, sets the sync mode of the rate~ object. The sync mode determines
whether or not the rate~ “in” will stay in phase with the input signal, and the
method used for synchronization. When the output of the rate~ object is “in
phase,” the input and output signals align precisely at the least common multiple
of their periods (i.e., they pass through zero and begin a new cycle at precisely the
same time). If the signals are in phase, and a new multiplier value is received, the
rate~ object changes the frequency of its output ramp accordingly. However, the
change in multiplier values means that the two signals may be out of phase. The
rate~ object handles this situation in one of three different ways, depending on
the sync mode: The sync modes are described below:

mode description

cycle The messages sync 0 or sync cycle set the cycle mode of the rate~ object
(the default mode). In cycle mode, the rate~ object does not change
the phase of its output until the end of the current cycle. When the
input ramp reaches its peak and starts over from zero, the rate~
object immediately restarts the output ramp, causing a discontinuity
in the output signal, and immediate phase synchronization.

lock The messages sync 1 or sync lock set the lock mode of the rate~ object. In
sync lock mode, the rate~ object performs synchronization when-
ever a new multiplier is received. The rate~ object immediately calcu-
lates the proper ramp position which corresponds to being “in phase”
with the new multiplier value, and jumps to that position.
451

rate~ Time-scale the output
of a phasor~
off The messages sync 2 or sync off disables the sync mode of the rate~
object. In this mode rate~ never responds to phase differences; when
a new multiplier is received, the rate~ object adjusts the speed of its
output ramps and they continue without interruption. Since this
mode never introduces a discontinuous jump in the ramp signal, it
may be useful if phase is unimportant.

Arguments
float Optional. The multiplier value used to scale the output signal.

Examples

Use rate~ to generate synchronized waveforms or control sources

See Also

phasor~ Sawtooth waveform generator
 452

receive~ Receive signals
without patch cords

453

Input
signal The receive~ object receives signals from all send~ objects that share its name. It

adds them together and sends the sum out its outlet. If no send~ objects share the
current name, the output of receive~ is 0. The send~ objects need not be in the
same patch as the corresponding receive~.

set The word set, followed by a symbol, changes the name of the receive~ so that it con-
nects to different send~ objects that have the symbol as a name. If no send~ objects
exist with the name, the output of receive~ is 0.

Arguments
symbol Obligatory. Sets the name of the receive~ object.

Output
signal The combination of all signals coming into all send~ objects with the same name

as the receive~.

Examples

Signals can be received from any loaded patcher, without patch cords

See Also

send~ Transmit signals without patch cords
Tutorial 4 Fundamentals: Routing signals

record~ Record sound
into a buffer
Input
signal In left inlet: When recording is turned on, the signal is recorded into the sample

memory of a buffer~ at the current sampling rate.

In middle inlets: If record~ has more than one input channel, these inlets record
the additional channels into the buffer~.

int In left inlet: Any non-zero number starts recording; 0 stops recording. Recording
starts at the start point (see below) unless append mode is on.

int or float In the inlet to the left of the right inlet: Set the start point within the buffer~ (in
milliseconds) for the recording. By default, the start point is 0 (the beginning of
the buffer~).

In right inlet: Sets the end point of the recording. By default, the end point is the
end of the buffer~ object’s allocated memory.

append The word append, followed by a non-zero number, enables append mode. In this
mode, when recording is turned on, it continues from where it was last stopped.
append 0 disables append mode. In this case, recording always starts at the start
point when it is turned on. Append mode is off initially by default.

loop The word loop, followed by a non-zero number, enables loop recording mode. In
loop mode, when recording reaches the end point of the recording (see above) it
continues at the start point. loop 0 disables loop recording mode. In this case,
recording stops when it reaches the end point. Loop mode is off initially by
default. The record object also takes into account any changes in the buffer~
object’s sampling rate if the buffer~ object’s length is modified for the purpose of
establishing loop points.

set The word set, followed by the name of a buffer~, changes the buffer~ where
record~ will write the recorded samples.

(mouse) Double-clicking on record~ opens an editing window where you can view the
contents of its associated buffer~ object.

Arguments
symbol Obligatory. Names the buffer~ where record~ will write the recorded samples.

int Optional, following the buffer~ name argument. Specifies the number of input
channels (1, 2, or 4). This determines the number of inlets record~ has. The two
rightmost inlets always set the record start and end points.
 454

record~ Record sound
into a buffer
Output
signal Sync output. During recording, this outlet outputs a signal that goes from 0 when

recording at the start point to 1 when recording reaches the end point. When not
recording, a zero signal is output.

Examples

Store a signal excerpt for future use

See Also

2d.wave~ Two-dimensional wavetable
buffer~ Store audio samples
groove~ Variable-rate looping sample playback
play~ Position-based sample playback
Tutorial 13 Sampling: Recording and playback
455

reson~ Resonant bandpass filter
Input
signal In left inlet: Any signal to be filtered.

In left-middle inlet: Sets the bandpass filter gain. This value should generally be
less than 1.

In right-middle inlet: Sets the bandpass filter center frequency in hertz.

In right inlet: Sets the bandpass filter “Q”—roughly, the sharpness of the filter—
where Q is defined by the center frequency divided by the filter bandwidth. Useful
Q values are typically between 0.01 and 500.

int or float An int or float can be sent in the three right inlets to change the filter gain, center
frequency, and Q. If a signal is connected one of the inlets, a number received in
that inlet is ignored.

list The first number sets the filter gain. The second number sets the filter center fre-
quency. The third number sets the filter Q. If any of the inlets corresponding to
these parameters have signals connected, the corresponding value in the list is
ignored.

clear Clears the filter’s memory. Since reson~ is a recursive filter, this message may be
necessary to recover from blowups.

Arguments
int or float Optional. Numbers set the initial gain, center frequency, and Q. The default val-

ues are 0 for gain, 0 for center frequency, and 0.01 for Q.

Output
signal The filtered input signal. The equation of the filter is

yn = gain * (xn - r * xn-2) + c1 * yn-1 + c2 * yn-2

where r, c1, and c2 are parameters calculated from the center frequency and Q.
 456

reson~ Resonant bandpass filter
Examples

Control gain, center frequency, and Q of a bandpass filter to alter a rich signal

See Also

biquad~ Two-pole, two-zero filter
comb~ Comb filter
457

rewire~ Host ReWire devices
The ReWire system connects audio applications together. It allows a program that generates audio
(a client) to feed it into a program that plays audio (a mixer).

The rewire~ object requires a properly installed ReWire client to be installed and available. The
rewire~ object allows MSP to be a ReWire mixer; there can only be one mixer active at any one
time.

You can use several rewire~ objects. Each object is associated with one ReWire client.

rewire~ is intended to be used with other ReWire-compatible software synthesizers. For a list of
compatible applications, visit the Propellerheads web site at http://www.propellerheads.se.

ReWire is a trademark of Propellerhead Software AS.

Input
bang In left inlet: If a ReWire device has been loaded, bang causes a list of its output

channel names to be sent out the second-from-right outlet.

int In left inlet: 1 starts the ReWire transport, 0 stops it. No sound can occur without
the transport being started.

play In left inlet: Starts the ReWire transport.

stop In left inlet: Stops the ReWire transport.

openpanel In left inlet: If the current device has a user interface panel, the word openpanel will
open it.

closepanel In left inlet: Closes the current device's user interface panel if it is open.

device In left inlet: The word device, followed by a number, switches to the ReWire device
associated with the number index. The index is obtained as the order in which
device names appear in a pop-up menu object connected to the second-to-right
outlet.

any symbol In left inlet: The symbol is interpreted as the name of a ReWire device. If the name
is valid, rewire~ attempts to switch to the device.

tempo In left inlet: The word tempo, followed by a number, sets the tempo to that number
in beats per minute. ReWire only handles integer tempos, and tempo is updated
on the next call to the client to return audio samples.

position In left inlet: The word position, followed by a number, sets the current play position
(in samples).

loop In left inlet: The word loop, followed by three numbers, sets the current loop posi-
tion and mode. The first number sets the loop start position in samples. The sec-
 458

rewire~ Host ReWire devices
ond number sets the loop end position in samples. If the third number is 1,
looping is turned on. If the third number is 0, looping is turned off. However,
note that ReWire clients may ignore looping if they do not produce transport- or
time-based output. For example, a software synthesizer that only responds to
MIDI note commands would probably not be affected by looping.

midi In left inlet: The word midi, followed by four or five numbers, sends a MIDI event
to a ReWire device. The first number is a time stamp value and is currently
ignored (in other words, the event is sent out immediately). The second number
is the MIDI bus index. ReWire 2 has 256 MIDI busses, indexed from 0 to 255.
The third number is the MIDI message status byte, and the fourth and fifth num-
bers are the MIDI message data bytes.

map The word map, followed by two numbers, maps a ReWire device's output channel
to an outlet of the rewire~ object. ReWire channels start at 1 with a maximum of
256. rewire~ object outlets are specified starting at 1 for the left outlet, or 0 to turn
the ReWire channel off. For example, map 3 2 causes the ReWire device's audio
output channel 3 to be mapped to the second-from-left outlet of the rewire~
object. You can find out the names of the ReWire audio output channels with the
bang message after the rewire~ object has a connection to a ReWire device. By
default, audio outlets map to the first channels of the ReWire device; in other
words, the leftmost signal outlet outputs the first channel of the device.

Arguments
symbol Optional. If present, a ReWire device name can be specified. rewire~ will attempt

to open the device when the object is initialized.

int Optional. Specifies the number of audio outputs the rewire~ object will have. If
no argument is present, one audio outlet is created. The maximum number of
outlets is 256.

Output
signal Out audio outlets (starting at left): The audio signal output from the ReWire

device is sent out the rewire~ object's outlets. By default, the leftmost outlet out-
puts the first channel of the device, but this mapping can be changed with the
map message.

symbol Out fourth-from-right outlet: Messages indicating the transport state of the
ReWire device. The position message with an int argument reports the transport
position in 15360 PPQ. The play and stop messages report when the transport is
started and stopped.

MIDI Out third-from-right outlet: MIDI events received from the ReWire device are
sent out this outlet preceded by the word midi. The first argument is always 0 (it is
the time stamp), the second argument is the ReWire MIDI bus index, the third
459

rewire~ Host ReWire devices
argument is the MIDI status byte, and the fourth and (optional) fifth arguments
are the MIDI data bytes.

symbol Out second-from-right outlet: A list of the currently available ReWire devices in
response to the bang message.

symbol Out right outlet: A list of the currently available device output names (in channel
order) for the currently used ReWire device.

Examples

rewire~ allows MIDI communication to and signal output from ReWire compatible devices

See Also

vst~ Host VST plug-ins
 460

round~ Round an input signal value

461

Input
signal In left inlet: A signal whose values will be rounded.

In right inlet: A signal whose value is used for rounding. Signal values received in
the left inlet will be rounded to either the absolute nearest integer multiple or the
nearest integer multiple between the value received in this inlet or 0 (See the near-
est message for more information).

nearest In left inlet: The word nearest, followed by a non-zero value, will cause the round~
object to round its input to the nearest absolute integer multiple of the value
received in the right inlet. The default is on. nearest 0 will cause the round~ object
to round the input signal to the nearest integer multiple between the value
received in the right inlet and zero (for positive numbers this will round down).

Arguments
int or float Optional. Sets the value the input signal will be rounded to.

Output
signal The rounded input signal.

Examples

round~ takes floating-point signals and rounds them to a specific increment

See Also

rampsmooth~ Smooth an incoming signal
slide~ Filter a signal logarithmically
trunc~ Truncate fractional signal values

 462

sah~ Sample and hold

Input
signal In left inlet: A signal to be sampled. When the control signal (in the right inlet)

goes from being at or below the current trigger value to being above the trigger
value, the signal in the left inlet is sampled and its value is sent out as a constant
signal value.

In right inlet: The control signal. In order to cause a change in the output of sah~,
the control signal must go from being at or below the trigger value to above the
trigger value. When this transition occurs the signal in the left inlet is sampled
and becomes the new output signal value.

int or float In left inlet: Sets the trigger value.

Arguments
int or float Optional. Sets the initial trigger value. The default is 0.

Output
signal When the control signal received in the right inlet goes from being at or below the

trigger value to being above the trigger value, the output signal changes to the cur-
rent value of the signal received in the left inlet. This signal value is sent out until
the next time the trigger value is exceeded by the control signal.

Examples

Hold the signal value constant until the next trigger

See Also

phasor~ Sawtooth wave generator

sampstoms~ Convert samples
to milliseconds

463

Input
float or int A value representing a number of samples received in the inlet is converted to mil-

liseconds at the current sampling rate and sent out the object’s right outlet. The
input may contain a fractional number of samples. For example, at 44.1 kHz sam-
pling rate, 322.45 samples is 7.31 milliseconds. (A float or int input triggers output
even when audio is off.)

signal Values in the signal represent a number of samples, and are converted to millisec-
onds at the current sampling rate and output as a signal out the left outlet. The
input may contain a fractional number of samples.

Arguments
None.

Output
signal Out left outlet: A signal consisting of the number of milliseconds corresponding to

values representing a number of samples in the input signal.

float Out right outlet: A number of milliseconds corresponding to a number of sam-
ples received in the inlet.

Examples

Some objects refer to time in samples, some in milliseconds

See Also

dspstate~ Report current DSP settings
mstosamps~ Convert milliseconds to samples

scope~ Signal oscilloscope
Input
signal In left inlet: The input signal is displayed on the X axis of the oscilloscope.

In right inlet: The input signal is displayed on the Y axis of the oscilloscope.

If signal objects are connected to both the left and right inlets, scope~ operates in
X-Y mode, plotting points whose horizontal position corresponds to the value of
the signal coming into the left (X) inlet and whose vertical position corresponds
to the value of the signal coming into the right (Y) inlet. If the two signals are
identical and in phase, a straight line increasing from left to right will be seen. If
the two signals are identical and 180 degrees out of phase, a straight line decreas-
ing from left to right will be seen. Other combinations may produce circles,
ellipses, and Lissajous figures.

int In left inlet: Sets the number of samples collected for each value in the display
buffer. Smaller numbers expand the image but make it scroll by on the screen
faster. The minimum value is 2, the maximum is 8092, and the default initial
value is 256. In X or Y mode, the most maximum or minimum value seen within
this period is used. In X-Y mode, a representative sample from this period is
used.

In right inlet: Sets the size of the display buffer. This controls the rate at which
scope~ redisplays new information as well as the scaling of that information. If the
buffer size is larger, the signal image will stay on the screen longer and be visually
compressed. If the buffer size is smaller, the signal image will stay on the screen a
shorter time before it is refreshed and will be visually expanded.

It might appear that the samples per display buffer element and the display buffer
size controls do the same thing but they have subtly different effects. You may
need to experiment with both controls to find the optimum display parameters
for your application.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB values
for the background color of the scope~ object’s display. The default value is set by
brgb 135 135 135.

bufsize The word bufsize, followed by a number, changes the number of samples stored in
the buffer used by the scope~ object.

drawstyle The word drawstyle, followed by a non-zero number, toggles an alternate drawing
style for the scope~ object which may make some waveforms more easily visible.
The default is off (drawstyle 0).

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB values
for the color of the scope~ object’s waveform display. The default value is set by frgb
102 255 51.
 464

scope~ Signal oscilloscope
range The word range, followed by two numbers (float or int) sets the minimum and
maximum displayed signal amplitudes. The default values are -1 to 1.

delay The word delay, followed by a number, sets the number of milliseconds of delay
before scope~ begins collecting values. After a non-zero delay period, scope~
enters a state in which it may wait for a trigger condition to be satisfied in the input
signal based on the setting of the trigger state (set with the trigger message) and
trigger level (set with the triglevel message). By default, the delay is 0.

trigger Sets the trigger mode. After a non-zero delay period (set with the delay message),
scope~ begins to wait for a particular feature in the input signal before it begins
collecting samples. trigger 1 sets an upward trigger in which the signal must go
from being below the trigger level (default 0) to being equal to it or above it. trigger
2 sets a downward trigger in which the signal must go from being above the trig-
ger level to being equal to it or below it. The default trigger mode is 0, which does
not wait after a non-zero delay period before collecting samples again. This is
sometimes referred to as a “line” trigger mode.

triglevel The word triglevel, followed by a number, sets the trigger level, used by trigger
modes 1 and 2. The default trigger level is 0. If you are displaying a waveform,
making slight changes to the trigger level will move the waveform to the left or
right inside the scope~. It is possible to set the trigger level so that scope~ will
never change the display.

(mouse) When you click on a scope~, its display freezes for as long as you hold the mouse
button down.

Inspector
The behavior of a scope~ object is displayed and can be edited using its Inspector.
If you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any scope~ object displays the scope~ Inspec-
tor in the floating window. Selecting an object and choosing Get Info… from the
Object menu also displays the Inspector.

The scope~ Inspector lets you specify the following attributes:

Buffers per Pixel sets the number of buffers per pixel which the scope~ object dis-
plays. The default is 25. Buffer Size specifies the number of samples stored in the
buffer used by the scope~ object. The default is 128. The Range number boxes set
the minimum and maximum values for the scope~ display. The default Min. value
is -1.0, and the default Max. value is 1.0. The Delay value sets the number of milli-
seconds of delay before scope~ begins collecting values. The Trigger Mode check-
boxes let you specify Line Up (default) or Line Down modes (see the trigger
message, above). Trigger Level sets the trigger level used by modes 1 and two of the
scope~ display (see the triglevel message in Input for more information) The
default trigger level is 0.
465

scope~ Signal oscilloscope
The Colors pull-down menu lets you use a swatch color picker or RGB values to
specify the colors used for phosphor and background of the scope~ display. dis-
play by the scope~ object. Phosphor sets the color the scope~ object uses for its dis-
play. The default phosphor color is 102 255 51. Background sets the scope~ object’s
background color. The default value is 135 135 135.

 The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments
None.

Output
None.

Examples

Display a signal, or plot two signals in X-Y mode

See Also

meter~ Visual peak level indicator
Tutorial 24 Analysis: Oscilloscope
 466

selector~ Assign one of several
inputs to an outlet
Input
int or float In left inlet: If a signal is not connected to the left inlet, an int or float determines

which input signal in the other inlets will be passed through to the outlet. If the
value is 0 or negative, all inputs are shut off and a zero signal is sent out. If it is 1
but less than 2, the signal coming in the first inlet to the right of the leftmost inlet
is passed to the outlet. If the number is 2 but less than 3, the signal coming into the
next inlet to the right is used, and so on.

signal In left inlet: If a signal is connected to the left inlet, selector~ operates in a mode
that uses signal values to determine which of its input signals is to be passed to its
outlet. If the signal coming in the left inlet is 0 or negative, the output is shut off
and a zero signal is sent out. If it is 1 but less than 2, the signal coming in the first
inlet to the right of the leftmost inlet is passed to the outlet. If the signal is 2 but
less than 3, the signal coming into the next inlet to the right is used, and so on.

In other inlets: Any signal, to be passed through to the selector~ object’s outlet
depending on the value of the most recently received int or float in the left inlet, or
the signal coming into the left inlet. The first signal inlet to the right of the left-
most inlet is considered input 1, the next to the right input 2, and so on.

If the signal network connected to one or more of the selector~ signal inlets con-
tains a begin~ object, and a signal is not connected to the left inlet of the selector~,
all processing between the begin~ outlet and the selector~ inlet is turned off when
the input signal is not being passed to the selector~ outlet.

Arguments
int Optional. The first argument specifies the number of input signals. The default is

1. The second argument specifies which signal inlet is initially open for its input to
be passed through to the outlet. The default is 0, where all signals are shut off and
a zero signal is sent out. If a signal is connected to the left inlet, the second argu-
ment is ignored.

Output
signal The output is the signal coming in the “open” inlet, as specified by a number or

signal in the left inlet. The output is a zero signal if all signal inlets are shut off.
467

selector~ Assign one of several
inputs to an outlet
Examples

Allow only one of several signals to pass; optionally turn off unneeded signal objects

See Also

gate~ Route a signal to one of several outlets
begin~ Define a switchable part of a signal network
Tutorial 5 Fundamentals: Turning signals on & off
 468

send~ Transmit signals
without patch cords

469

Input
signal The send~ object sends its input signal to all receive~ objects that share its name.

The send~ object need not be in the same patch as the corresponding receive~
object(s).

clear The clear message clears all of the receive~ buffers associated with the send~
object. This message is only used with patchers which are being muted inside a
subpatch loaded by the poly~ object.

set The word set, followed by a symbol, changes the name of the send~ so that it con-
nects to different receive~ objects that have the symbol as a name. (If no receive~
objects with the same name exist, send~ does nothing.)

Arguments
symbol Obligatory. Sets the name of the send~ object.

Output
None.

Examples

Signal coming into send~ comes out any receive~ object with the same name

See Also

receive~ Receive signals without patch cords
Tutorial 4 Fundamentals: Routing signals

seq~ Signal-driven
event sequencer
Input
signal An input signal whose output is between 0. and 1.0 (usually the output of a pha-

sor~) is used to drive the event sequencer.

any message The seq~ object is used to record and play back messages. All events received in
the inlet are stored according to the current value of the input signal. Any message
can be sequenced except for commands to the seq~ object itself. The example
shows a simple way to work around this limitation.

Note: seq~ can be used to sequence MIDI data if the MIDI input stream is con-
verted into lists of MIDI events. This conversion is necessary to avoid outputting
a corrupted MIDI stream which would occur if only the raw int messages of a
MIDI stream were sequenced individually and the seq~ object were not doing a
simple forward linear playback.

bang Causes information about the seq~ object’s current sequence number, mode of
operation (record, overdub, play) and total number of current events to be
printed in the Max window.

add The word add, followed by an int, a float and a message, inserts a Max event speci-
fied by the message at the time specified by the float for the sequence number
specified by the int. (e.g., add 2 0.5 honk will insert the message honk to be played at
the halfway point of sequence 2.)

dump Causes the contents of all stored event sequences to be sent out the right outlet.
The word dump, followed by a number, outputs only the sequence designated by
the number.

erase Erases all current sequences.

overdub The word overdub, followed by 1, causes seq~ to begin Max event recording of the
current sequence (set by the seqnum message) in “overdub” mode. Recording
begins at the current point of the loop and wraps around at the point where the
input signal reaches 1, continuing to record as the signal passes its original value.
The message overdub 0 turns off overdub mode.

play The word play, followed by 1, causes seq~ to begin Max event playback of the cur-
rent sequence (set by the seqnum message) at the point of the loop specified by the
current value of the signal input. play 0 turns off playback. By default, playback is
off.

read Reads a text file containing Max event sequences created using the seq~ object’s
write message into the memory of the seq~ object. If no symbol argument appears
after the word read, a standard open file dialog is opened showing available text
files. The word read, followed by a symbol, reads the file whose filename corre-
sponds to the symbol into the seq~ object’s memory without opening the dialog
box.
 470

seq~ Signal-driven
event sequencer
record The word record, followed by 1, causes seq~ to begin recording events into the cur-
rent sequence (set by the seqnum message) at the point of the loop specified by the
current value of the signal input. record 0 turns off playback. By default, recording
is off.

seqnum The word seqnum, followed by a number or symbol, sets the current Max event
sequence being recorded or played back.

write Saves the contents of all current Max event sequences into a text file. A standard
file dialog is opened for naming the file. The word write, followed by a symbol,
saves the file, using the symbol as the filename, in the same folder as the patch
containing the seq~ object. If the patch has not yet been saved, the seq~ file is
saved in the same folder as the Max application.

Arguments
None.

Output
any message Out left outlet: When playback is enabled with the play 1 message, the seq~ object

outputs all events recorded at the time specified by the input signal.

list Out right outlet: The dump message will cause the seq~ object to output the con-
tents of a specified sequence to be output in the form of a list consisting of an int
which specifies the sequence number, a float which specifies the signal value asso-
ciated with that point in time, and the int, float, symbol or list to be output at that
time.

Examples
471

seq~ Signal-driven
event sequencer
See Also

phasor~ Sawtooth wave generator
 472

sfinfo~ Report audio file information
Input
open The word open, followed by a name of an audio file, opens the file if it exists in

Max’s search path. Without a filename, open brings up a standard open file dialog
allowing you to choose a file. After the file is opened, sfinfo~ interrogates the file
and reports the number of channels, sample size, sample rate, file length in milli-
seconds, sample type, and filename out its outlets.

bang If a file has already been opened, either with the open message or specified by an
argument to sfinfo~, bang reports the number of channels, sample size, sample
rate, and length in milliseconds out the sfinfo~ object’s outlets.

getnamed In left inlet: The word getnamed, followed by a symbol which specifies the name of
an sfplay~ object, interrogates the named sfplay~ object and reports the number
of channels, sample size, sample rate, file length in milliseconds, sample type, and
filename out its outlets.

Arguments
symbol Optional. Names a file that sfinfo~ will report about when it receives a subsequent

bang message. The file must exist in the Max search path.

 Output
int Out left outlet: The number of channels in the audio file.

Out 2nd outlet: The audio file’s sample size in bits (typically 16).

float Out 3rd outlet: The audio file’s sampling rate.

Out 4th outlet: The duration of the audio file in milliseconds.

symbol Out 5th outlet: the sample type of the audio file.

The following types of sample data are supported:

int8 8-bit integer
int16 16-bit integer
int24 24-bit integer
int32 32-bit integer
float32 32-bit floating-point
float64 64-bit floating-point
mulaw 8-bit µ-law encoding
alaw 8-bit a-law encoding

Out 6th outlet: The filename of the audio file
473

sfinfo~ Report audio file information
Examples

Report information about a specific audio file

See Also

info~ Report information about a sample
sflist~ Store audio file cues
sfplay~ Play audio file from disk
Tutorial 16 Sampling: Record and play audio files
 474

sflist~ Store audio file cues
Input
open The word open, followed by the name of an AIFF, WAV, NeXT/Sun or Sound

Designer II (Macintosh only) audio file, opens the file if it is located in Max’s
search path. Without a filename, open brings up a standard open file dialog allow-
ing you to choose a file. When a file is opened, its beginning is read into memory,
and until another file is opened, playing from the beginning the file is defined as
cue 1. Subsequent cues can be defined referring to this file using the preload mes-
sage without a filename argument. When the open message is received, the previ-
ous current file, if any, remains open and can be referred to by name when
defining a cue with the preload message. If any cues were defined that used the pre-
vious current file, they are still valid even if the file is no longer current.

clear The word clear with no arguments clears all defined cues. After a clear message is
received, only the number 1 will play anything (assuming there’s an open file).
The word clear followed by one or more cue numbers removes them from the
sflist~ object’s cue list.

embed The message embed, followed by any non-zero integer, causes sflist~ to save all of
its defined cues and the name of the current open file when the patcher file is
saved. The message embed 0 keeps sflist~ from saving this information when the
patcher is saved. By default, the current file name and the cue information is not
saved in sflist~ when the patcher is saved. If an sflist~ object is saved with stored
cues, they will all be preloaded when the patcher containing the object is loaded.

fclose The word fclose, followed by the name of an open file, closes the file and removes
all cues associated with it. The word fclose by itself closes the current file.

openraw The openraw message functions exactly like open, but allows you to open any type
of file for playback and make it the current file. The openraw message assumes that
the file being opened is a 16-bit stereo file sampled at a rate of 44100 Hz, and
assumes that there is no header information to ignore (i.e., an offset of 0). The file
types can be explicitly specified using the samptype, offset, srate, and srchans mes-
sages.

preload Defines a cue—an integer greater than or equal to 2—to refer to a specific region
of a file. When that cue number is subsequently received by an sfplay~ object that
is set to use cues from the sflist~ object, the specified region of the file is played by
sfplay~. Cue number 1 is always the beginning of the current file—the file last
opened with the open message.—and cannot be modified with the preload mes-
sage.

There are a number of forms for the preload message. The word preload is followed
by an obligatory cue number between 2 and 32767. If the cue number is followed
by a filename—a file that is currently open or one that is in Max’s search path—
that cue number will henceforth play the specified file. Note that a file need not
475

sflist~ Store audio file cues
have been explicitly opened with the open message in order to be used in a cue. If
no filename is specified, the currently open file is used.

After the optional filename, an optional start time in milliseconds can be speci-
fied. If no start time is specified, the beginning of the file is used as the cue start
point. After the start time, an end time in milliseconds can be specified. If no end
time is specified, or the end time is 0, the cue will play to the end of the file. If the
end time is less than the start time, the cue is defined but will not play. Eventually
it may be possible to define cues that play in reverse.

After the start and/or end time arguments, a optional directional buffer flag is
used to enable reverse playback of stored cues. Setting this flag to 1 enables reverse
cue playback. The default setting is 0 (bidirectional buffering off).

A final optional argument is used to set the playback speed. A float value sets the
playback speed for an sfplay~ object relative to the object’s global playback
speed—set by the speed message. The default value is 1.

Each cue that is defined requires approximately 40K of memory per sfplay~ chan-
nel at the default buffer size (40320), with bidirectional buffering turned off. With
bidirectional buffering turned on, the amount of memory per cue is doubled.

print Prints a list of all the currently defined cues.

samptype The word samptype, followed by a symbol, specifies the sample type to use when
interpreting the audio file’s sample data (thus overriding the audio file's actual
sample type). This is sometimes called “header munging.” When reading files in
response to the openraw message, the assumed sample type is 16-bit integer. Mod-
ifications using samptype make no changes to the file on disk.

The following types of sample data are supported:

int8 8-bit integer
int16 16-bit integer
int24 24-bit integer
int32 32-bit integer
float32 32-bit floating-point
float64 64-bit floating-point
mulaw 8-bit µ-law encoding
alaw 8-bit a-law encoding

srcchans The word srcchans, followed by a number, specifies the number of channels in
which to interpret the audio file's sample data (thus overriding the audio file's
actual number of channels). This is sometimes called “header munging.” When
reading files in response to the openraw message, the assumed number of channels
is 2. Modifications using srcchans make no changes to the file on disk.
 476

sflist~ Store audio file cues
Arguments
symbol Obligatory. Names the sflist~. sfplay~ objects use this name to refer to cues stored

inside the object.

int Optional. Sets the buffer size used to preload audio files. The default and mini-
mum is 16384. Preloaded buffers are 4 times the buffer size per channel of the
audio file.

Output
None.

Examples

Store a global list of cues that can be used by one or more sfplay~ objects.

See Also

buffer~ Store audio samples
groove~ Variable-rate looping sample playback
play~ Position-based sample playback
sfinfo~ Report audio file information
sfplay~ Play audio file from disk
sfrecord~ Record to audio file on disk
Tutorial 16 Sampling: Record and play audio files
477

sfplay~ Play audio file
from disk
Input
float In right inlet: Defines the playback rate of an audio file. A value of 1.0 plays the

audio file at normal speed. A playback rate of -1 plays the audio file backwards at
normal speed. A playback rate of 2 plays the audio file at twice the normal speed.
A playback rate of .5 plays the audio file at half the normal speed.

signal In left inlet: An input signal may be used for the sample-accurate triggering of
prestored cues. When a signal value is received in the left inlet, the integer portion
of the signal value is monitored. When the integer portion of the input signal
changes to a value equal to the index of a prestored cue, that cue is triggered. Neg-
ative values are ignored.

In right inlet: The playback rate of an audio file can also be defined by a signal,
allowing for playback speed change over time for vibrato or other types of speed
effects. The same conventions with respect to number value and sign and play-
back rate apply as for float values.

int In left inlet: If a file has been opened with the open message, 1 begins playback (of
the most recently opened file), and 0 stops playback. Numbers greater than 1 trig-
ger cues that have been defined with the preload message, or that were defined
based on the saved state of the sfplay~ object. When the file is played, the audio
data in the file is sent out the signal outlets according to the number of channels
the object has. When the cue is completed or sfplay~ is stopped with a 0, a bang is
sent out the right outlet. If the object is currently assigned to an sflist~ object
(using the set message or with a typed-in argument), an int will trigger cues stored
in the sflist~ object rather than inside the sfplay~. To reset sfplay~ to use its own
cues, send it the set message with no arguments.

anything In left inlet: If the name of an sflist~ object is sent to sfplay~, followed by a num-
ber, the numbered cue from the sflist~ is played if it exists.

clear In left inlet: The word clear with no arguments clears all defined cues. After a clear
message is received, only the number 1 will play anything (assuming there’s an
open file). The word clear followed by one or more cue numbers removes them
from the sfplay~ object’s cue list.

embed In left inlet: The message embed, followed by any non-zero integer, causes sfplay~
to save all of its defined cues and the name of the current open file when the
patcher file is saved. The message embed 0 keeps sfplay~ from saving this informa-
tion when the patcher is saved. By default, the current file name and the cue infor-
mation is not saved in sfplay~ when the patcher is saved. If an sfplay~ object is
saved with stored cues, they will all be preloaded when the patcher containing the
object is loaded.
 478

sfplay~ Play audio file
from disk
fclose In left inlet: The word fclose, followed by the name of an open file, closes the file
and removes all cues associated with it. The word fclose by itself closes the current
file.

list In left inlet: Gives a set of cues for sfplay~ to play, one after the other. The maxi-
mum number of cues is in a list is 128. Cue numbers (set using the preload mes-
sage) can be any integer greater than or equal to 2.If a cue number in a list has not
been defined, it is skipped and the next cue, if any, is tried. If the object is cur-
rently assigned to an sflist~ object, a list uses cues stored in the sflist~ object. Oth-
erwise, cues stored inside the sfplay~ object are used.

loop In left inlet: The word loop, followed by 1, turns on looping. loop 0 turns off loop-
ing. By default, looping is off.

modout In left inlet: The word modout, followed by 1, turns on modulo output. If the num-
ber of channels in a audio file is less than the number of outputs for the sfplay~
object, the sfplay~ object will reduplicate the audio file’s channels across all of
sfplay~ object's outputs (rather than outputting zero) if modulo output is
enabled. For example, a mono audio file loaded into an sfplay~ object with two
outputs will be played with the mono channel sent out both outputs of the object
if modulo output is enabled. Similarly a stereo audio file will be played on an
sfplay~ object with four outlets with the left channel played on outputs 1 and 3,
while the right will be played on outputs 2 and 4. The message modout 0 disables
this feature.

name The word name, followed by a symbol, changes the name by which other objects
such as sflnfo~ can refer to the sfplay ~object. Objects that were referring to the
sfplay~ under its old name lose their connection to it. Every sfplay~ object should
be given a unique name; if you give an sfplay~ object a name that already belongs
to another sfplay~ object, that name will no longer be associated with the sfplay~
object that first had it.

offset In left inlet: The word offset, followed by a number, specifies the sample start offset
in bytes. The default value is 0. This value useful for aligning samples and avoid-
ing playback of header information.

open In left inlet: followed by the name of an AIFF, WAV, NeXT/Sun, raw format, or
Sound Designer II (Macintosh only) audio file or CD-audio track, opens the file
for playback and makes it the current file. The word open, followed by a filename,
opens the file if it exists in Max’s search path. Without a filename, open brings up a
standard open file dialog allowing you to choose a file. When a file is opened, its
beginning is read into memory, and until another file is opened, you can play the
file from the beginning by sending sfplay~ the message 1. When the open message
is received, the previous current file, if any, remains open and can be referred to by
name when defining a cue with the preload message. If any cues were defined that
used the previous current file, they are still valid even if the file is no longer cur-
rent.
479

sfplay~ Play audio file
from disk
openraw In left inlet: The openraw message functions exactly like open, but allows you to
open any type of file for playback and make it the current file. The openraw mes-
sage assumes that the file being opened is a 16-bit stereo file sampled at a rate of
44100 Hz, and assumes that there is no header information to ignore (i.e., an off-
set of 0). The file types can be explicitly specified using the samptype, offset, srate,
and srchans messages.

pause In left inlet: The pause message causes the audio file playback to pause at its cur-
rent playback position. Playback can be restarted with the resume message.

preload In left inlet: Defines a cue—an integer greater than or equal to 2—to refer to a
specific region of a file. When that cue number is subsequently received, sfplay~
plays that region of that file. Cue number 1 is always the beginning of the current
file—the file last opened with the open message.—and cannot be modified with
the preload message.

There are a number of forms for the preload message. The word preload is followed
by an obligatory cue number between 2 and 32767. If the cue number is followed
by a filename—a file that is currently open or one that is in Max’s search path—
that cue number will henceforth play the specified file. Note that a file need not
have been explicitly opened with the open message in order to be used in a cue. If
no filename is specified, the currently open file is used.

After the optional filename, an optional start time in milliseconds can be speci-
fied. If no start time is specified, the beginning of the file is used as the cue start
point. After the start time, an end time in milliseconds can be specified. If no end
time is specified, or the end time is 0, the cue will play to the end of the file. If the
end time is less than the start time, the cue is defined but will not play. Eventually
it may be possible to define cues that play in reverse.

After the start and/or end time arguments, a optional directional buffer flag is
used to enable reverse playback of stored cues. Setting this flag to 1 enables reverse
cue playback. The default setting is 0 (bidirectional buffering off).

A final optional argument is used to set the playback speed. A float value sets the
sfplay~ object’s playback speed relative to the object’s global playback speed—set
set by either the speed message or the sfplay~ object’s right inlet. The default value
is 1.

Each cue that is defined requires approximately 40K of memory per sfplay~ chan-
nel at the default buffer size (40320), with bidirectional buffering turned off. With
bidirectional buffering turned on, the amount of memory per cue is doubled.

The preload message is always deferred to low priority. The pause, resume, and int
messages are not. If you have problems with these messages arriving before you
want them to in overdrive mode(i.e., before you've preloaded the most recent
cue), use the defer object.
 480

sfplay~ Play audio file
from disk
print In left inlet: Prints information about the state of the object, plus a list of all the
currently defined cues.

resume In left inlet: If playback was paused, playback resumes from the paused point in
the file.

samptype In left inlet: The word samptype, followed by a symbol, specifies the sample type to
use when interpreting the audio file’s sample data (thus overriding the audio file's
actual sample type). This is sometimes called “header munging.” When reading
files in response to the openraw message, the assumed sample type is 16-bit integer.
Modifications using samptype make no changes to the file on disk.
481

sfplay~ Play audio file
from disk
The following types of sample data are supported:

int8 8-bit integer
int16 16-bit integer
int24 24-bit integer
int32 32-bit integer
float32 32-bit floating-point
float64 64-bit floating-point
mulaw 8-bit µ-law encoding
alaw 8-bit a-law encoding

seek In left inlet: The word seek, followed by a start time in milliseconds, moves to the
specified position in the current file and begins playing. After the start time, an
optional end time can be specified, which will set a point for playback to stop. The
seek message is intended to allow you to preview and adjust the start and end
points of a cue.

NOTE: The seek message is always deferred to low priority. If you have problems
with these messages arriving before you want them to in overdrive mode(i.e.
before you've finished seeking to a new location), then use the defer object.

set In left inlet: The message set, followed by a name of an sflist~ object, will cause
sfplay~ to play cues stored in the sflist~ when it receives an int or list. The message
set with no arguments resets sfplay~ to use its own internally defined cues when
receiving an int or list.

speed In left inlet: The word speed, followed by a number, sets an overall multiplier on
the playback rate of all cues played by the object. A value of 1.0 (the default) plays
all cues at normal speed. A playback rate of -1 plays all cues backward at normal
speed. A playback rate of 2 plays the cues at twice their defined speed. A playback
rate of 0.5 plays cues at half their defined speed. For example, if a cue has a play-
back rate of 2, and the speed is set to 3, the cue will play back at 6 times the normal
speed.

srate In left inlet: The word srate, followed by a number, specifies the sampling rate
(Hertz) at which to interpret the audio file's sample data (thus overriding the
audio file's actual sampling rate). This is sometimes called “header munging.”
When reading files in response to the openraw message, the assumed sampling
rate is 44,100 Hz. Modifications using srate make no changes to the file on disk.

srcchans In left inlet: The word srcchans, followed by a number, specifies the number of
channels in which to interpret the audio file's sample data (thus overriding the
audio file's actual number of channels). This is sometimes called “header mung-
ing.” When reading files in response to the openraw message, the assumed number
of channels is 2. Modifications using srcchans make no changes to the file on disk.
 482

sfplay~ Play audio file
from disk
Arguments
symbol Optional. If the first argument is a symbol, it names an sflist~ that the sfplay~

object will use for playing cues. If no symbol argument is given, sfplay~ plays its
own internally defined cues.

int Optional. Sets the number of output channels, which determines the number of
signal outlets that the sfplay~ object will have. The maximum number of channels
is 28. The default is 1. If the audio file being played has more output channels than
the sfplay~ object, higher-numbered channels will not be played. If the audio file
has fewer channels, the signals coming from the extra outlets of sfplay~ will be 0.

An additional optional argument can be used to specify the disk buffer size in
samples. If this argument has a value of 0, the default disk buffer size will be used.

An additional optional argument can be used to create outlets to the sfplay~
object which display positioning information. Specifying a final argument of 1
creates a single outlet to the left of the rightmost “bang on finish or halt” outlet
which outputs a signal value which corresponds to the current playback position
in milliseconds.

Like all MSP audio signals, this playback position is a 32-bit single precision float-
ing-point signal. If greater precision is desired, specifying a final argument of 2
creates a second outlet which outputs a second 32-bit single precision floating-
point signal containing the single precision roundoff error. Together these signals
provide near double precision floating-point accuracy. (Note: after several min-
utes a single precision floating-point value is no longer sample accurate) Using the
two signals together with objects such as the unsupported Max/ MSP high resolu-
tion signal processing objects like hr.+~, one may perform sample-accurate cal-
culations based on file position

symbol Optional. If the last argument is a symbol, it specifies a name by which other
objects can refer to the sfplay~ object to access its contents.

Output
signal There is one signal outlet for each of the sfplay~ object’s specified output channels

(set by or as an argument to the sfplay~ object) that sends out the audio data of
the corresponding channel of the audio file when a cue number is received in the
inlet. (The left outlet plays channel 1, and so on.)

If the optional output position argument is specified, there will be one or two sig-
nal outputs following the channel outputs whose signal outputs display position-
ing information. If the argument is 1, a single outlet to the left of the rightmost
“bang on finish or halt” outputs a signal containing the current playback position
in milliseconds. Specifying a final argument of 2 creates a second outlet which
outputs a signal containing the playback position single precision roundoff error
483

sfplay~ Play audio file
from disk
in milliseconds (see Arguments for a more detailed description of the sfplay~
object's position outlets).

bang Out right outlet: When the file is done playing, or when playback is stopped with
a 0 message, a bang is sent out.

Examples

Audio files can be played from the hard disk, without loading the whole file into memory

See Also

buffer~ Store audio samples
groove~ Variable-rate looping sample playback
play~ Position-based sample playback
sfinfo~ Report audio file information
sflist~ Store audio file cues
sfrecord~ Record to audio file on disk
Tutorial 16 Sampling: Record and play audio files
 484

sfrecord~ Record to audio file on disk
Input
open In left inlet: Opens a file for recording. By default, the file type is AIFF, but

sfrecord~ also supports NeXT/Sun, WAV, and Sound Designer II (Macintosh
only) formats. The word open without a filename argument brings up a standard
Save As dialog allowing you to choose a filename. The optional symbols aiff, au,
raw, wave, or sd2 (Macintosh only) specify the file format (which can also be set in
the Save As dialog with a Format pop-up menu). If open is followed by another
symbol, it creates a file in the current default volume. An existing file with the
same name will be overwritten. The format symbol (e.g., aiff) can follow the
optional filename argument.

int In left inlet: If a file has been opened with the open message, a non-zero value
begins recording, and 0 stops recording and closes the file. sfrecord~ requires
another open message to record again if a 0 has been sent.

Recording may also stop spontaneously if there is an error, such as running out of
space on your hard disk.

loop In left inlet: The word loop, followed by 1, turns on looping. loop 0 turns off loop-
ing. By default, looping is off.

nchans The word nchans, followed by a number in the range 1-28, sets the number of
channels for the audio file to be recorded. The default is 1.

print Outputs cryptic status information about the progress of the recording.

record In left inlet: If a file has been opened with the open or opensd2 message, the word
record, followed by a time in milliseconds, begins recording for the specified
amount of time. The recording can be stopped before it reaches the end by send-
ing sfrecord~ a 0 in its left init.

resample The word resample, followed by a float, will upsample or downsample the file.
Sample rates are expressed as floating-point values—1.0 is the current sampling
rate, 0.5 is half the current. 2.0 is twice the current sample rate, etc.

samptype In left inlet: The word samptype, followed by a symbol, specifies the sample type to
use when recording the audio file (thus overriding the audio file's actual sample
type). This is sometimes called “header munging.” When reading files in response
to the openraw message, the assumed sample type is 16-bit integer.
485

sfrecord~ Record to audio file on disk
The following types of sample data are supported:

int8 8-bit integer
int16 16-bit integer
int24 24-bit integer
int32 32-bit integer
float32 32-bit floating-point
float64 64-bit floating-point
mulaw 8-bit µ-law encoding
alaw 8-bit a-law encoding

signal Each inlet of sfrecord~ accepts a signal which is recorded to a channel of an audio
file when recording is turned on.

Arguments
int Optional. Sets the number of input channels, which determines the number of

inlets that the sfrecord~ object will have. The maximum number of channels is 28,
and the default is 1. The audio file created will have the same number of channels
as this argument. Whether you can actually record the maximum number of
channels is dependent on the speed of your processor and hard disk.

Examples

Save an audio file containing “real world” sound and/or sound created in MSP

See Also

sfplay~ Play audio file from disk
Tutorial 16 Sampling: Record and play audio files
 486

sig~ Constant signal of a number

487

Input
int or float The number is sent out as a constant signal.

signal Any signal input is ignored. You can connect a begin~ object to the sig~ inlet to
define the beginning of a switchable signal network.

Arguments
int or float Optional. Sets an initial signal output value.

Output
signal sig~ outputs a constant signal consisting of the value of its argument or the most

recently received int or float in its inlet.

Examples

Provide constant numerical values to a signal network with sig~

See Also

+~ Add signals
begin~ Define a switchable part of a signal network
line~ Linear ramp generator
Tutorial 4 Fundamentals: Routing signals

sinh~ Signal hyperbolic
sine function
Input
signal Input to a hyperbolic sine function.

Arguments
None.

Output
signal The hyperbolic sine of the input.

Examples

sinh~ can generate interesting oscillator-synced audio control signals
 488

sinh~ Signal hyperbolic
sine function
See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function
489

 490

sinx~ Signal
sine function

Input
signal Input to a sine function.

Arguments
None.

Output
signal The sine of the input.

Examples

sinx~ can generate cycloids for audio control signals

See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
tanh~ Signal hyperbolic tangent function
tanx~ Signal tangent function

slide~ Filter a signal
logarithmically
Input
signal A signal to be filtered. Whenever a new value is received, slide~ filters the input

signal logarithmically between changes in signal value. using the formula

y(n) = y(n-1) + ((x(n) - y(n-1))/slide).

A given sample output from slide~ is equal to the last sample's value plus the dif-
ference between the last sample's value and the input divided by the slide value.
Given a slide value of 1, the output will therefore always equal the input. Given a
slide value of 10, the output will only change 1/10th as quickly as the input. This
can be particularly useful for lowpass filtering or envelope following.

float In middle inlet: Specifies the slide up value to be used when an incoming value is
greater than the current value.

In right inlet: Specifies the slide down value to be used when an incoming value is
less than the current value.

Arguments
float Optional. Specifies the slide up value. The default is 1.

float Optional. A second argument specifies the slide down value. The default is 1.

Output
signal The filtered signal.

Examples

 slide~ performs logarithmic smoothing of an input signal
491

slide~ Filter a signal
logarithmically
See Also

rampsmooth~ Smooth an incoming signal
 492

snapshot~ Convert signal values
to numbers

493

Input
signal In left inlet: The signal whose values will be sampled and sent out the outlet.

int or float In left inlet: Any non-zero number turns on the object’s internal clock, 0 turns it
off. The internal clock is on initially by default, if a positive clock interval has been
provided.

In right inlet: Sets the interval in milliseconds for the internal clock that triggers
the automatic output of values from the input signal. If the interval is 0, the clock
stops. If it is a positive integer, the interval changes the rate of data output.

bang Sends out a report of the current signal value.

offset The word offset, followed by a number, sets the number of the sample within a sig-
nal vector that will be reported when snapshot~ sends its output. The number is
constrained between 0 (the default) and the current signal vector size minus one.

Arguments
int Optional. The first argument sets the internal clock interval. If it is 0, the internal

clock is not used, so snapshot~ will only output data when it receives a bang mes-
sage. By default, the interval is 0. The second argument sets the sample number
within a signal vector that is reported.

Output
float When snapshot~ receives a bang, or its internal clock is on, sample values from the

input signal are sent out its outlet.

Examples

See a sample of a signal at a given moment

See Also

capture~ Store a signal to view as text
sig~ Constant signal of a number
Tutorial 23 Analysis: Viewing signal data

spike~ Report intervals of
zero to non-zero transitions
Input
signal In left inlet: A signal to be analyzed. The spike~ object analyzes an incoming sig-

nal and reports the interval, in milliseconds, between transitions between zero
and non-zero signal values. You can specify a refractory period, which defines how
soon after detecting a transition the spike~ object will report the next instance.

int or float In right inlet: Sets the refractory period, in milliseconds. When a signal transition
is detected, this value sets the time, in milliseconds, during which no transitions
are reported. After the refractory period has elapsed, the spike~ object reports the
next zero to non-zero signal transition. The default is 0.

Arguments
int or float Optional. Sets the refractory period (see above).

Output
float The interval, in milliseconds, since the last zero to non-zero signal transition has

occurred (which includes the refractory period, if one is set).

Examples

spike~ reports how often a zero to non-zero transition occurs in its input signal
 494

spike~ Report intervals of
zero to non-zero transitions
See Also

change~ Report signal direction
edge~ Detect logical signal transitions
zerox~ Detect zero crossings
495

 496

sqrt~ Square root of a signal

Input
signal sqrt~ outputs a signal that is the square root of the input signal. A negative input

has no real solution, so it causes an output of 0.

Arguments
None.

Output
signal The square root of the input signal.

Examples

Output signal is the square root of the input signal

See Also

curve~ Exponential ramp generator
log~ Logarithm of a signal
pow~ Signal power function

stutter~ Signal capture
and granular oscillator
Input
signal In left inlet: Signals coming into the left inlet are stored in a record buffer, where

they can be copied into a playback buffer and used as a playback source.

In middle inlet: Accepts a trigger signal, which can be specified to be positive or
negative. When the signal changes polarity in the correct direction, samples
recorded from the left inlet are copied to the playback buffer.

In right and successive inlets: A phase signal input in the range of 0-1 for each
inlet controls the output speed of the playback buffer for that inlet. The number of
phase inlets in a stutter~ object is set using the fifth argument; the default is a sin-
gle inlet. Specifying multiple phase inlets allows you to specify multiple playback
points in the sampled buffer.

bang In left inlet: A bang causes the last buffer of recorded samples to be copied to the
playback buffer. You can use a bang instead of or in conjunction with the middle
inlet trigger signal.

ampvar The word ampvar, followed by a float, specifies a random amplitude variation in
the output signal(s). The default is 0 (no variation).

dropout The word dropout, followed by a float, determines the percentage chance of a play-
back signal dropping out (i.e. "gapping’ or not playing). The default is 0 (no gap-
ping).

int In left inlet: Specifies the size (in samples) of the playback buffer. This can be any
number up to the maximum memory determined by the first argument to stut-
ter~.

maxsize The word maxsize, followed by a number, sets the maximum buffer size, in sam-
ples.

polarity The word polarity, followed by a 0 or 1, changes the trigger polarity of stutter~ to
negative or positive, respectively.

repeat The word repeat, followed by a float, determines the percentage change of the
record buffer not being copied to the playback buffer so that the previous play-
back buffer is repeated. The default is 0 (no repeat).

setbuf The word setbuf, followed by arguments for a buffer name, a sample offset, and a
channel, copies the specified samples to the named buffer~ object. Note: stutter~
always uses its internal buffer as the playback buffer; the copied samples can be
sent to a named buffer~ object for use in some other way, if desired. The time
required to move the specified amount of memory to the buffer is n/m, there n is
the number of samples being copied and m is the fourth argument to the stutter~
object.
497

stutter~ Signal capture
and granular oscillator
Arguments

int Obligatory. The maximum buffer length, in samples. This determines the mem-
ory size of the record buffer. Parts of the record buffer are copied to the playback
buffer when the object is triggered.

int Obligatory. The initial buffer size, in samples, to copy from the record to the play-
back buffer upon receiving a trigger.

int Obligatory. The polarity to use for accepting a trigger signal in the middle inlet. If
the argument is greater than 0, stutter~ accepts a positive trigger; otherwise stut-
ter~ accepts a negative trigger.

int Obligatory. The number of samples which are copied from the record buffer to
the playback buffer each iteration of the perform loop (the signal vector size). A
larger value will decrease the stutter~ object’s memory requirements and increase
the CPU requirements.

int Optional. An optional fifth argument allows you to specify multiple independent
signal outputs the stutter~ object will use when playing back from the playback
buffer. The default is 1, and the maximum is 30. The number of phase signal
inputs to the stutter~ object is also determined by this argument.

Output
signal All outlets: The stutter~ object’s outlets produce a signal from the playback buffer,

the location and speed of which is determined by the phase input for that play-
back outlet. The number of outlets is determined by the fifth argument to the stut-
ter~ object.
 498

stutter~ Signal capture
and granular oscillator
Examples

stutter~ captures a new slice of incoming sound into an oscillating buffer whenever it receives a trigger

See Also

buffer~ Store audio samples
phasor~ Sawtooth wave generator
record~ Record sound into a buffer
499

svf~ State-variable filter
with simultaneous outputs
The svf~ object is an implementation of a state-variable filter algorithm described in Hal Cham-
berlin’s book, “Musical Applications of Microprocessors.” A unique feature of this filter object is that
it produces lowpass, highpass, bandpass, and bandreject (notch) output simultaneously—all four
are available as outlets.

Input
signal In left inlet: Signal to be filtered.

In middle inlet: Sets the filter center frequency in Hz.

In right inlet: Sets the bandpass filter “Q”—roughly, the sharpness of the filter—
where Q is defined as the filter bandwidth divided by the center frequency. Useful
Q values are typically between 0.01 and 500.

float In middle and right inlets: A float can be sent in the two right inlets to change the
center frequency and Q of the filter. By default, the center frequency is expressed
in Hz, where the allowable range is from 0 to one fourth of the current sampling
rate. For convenience, svf~ has two additional input modes that use the more
conventional input range, 0 - 1. (see the linear and radians messages). If a signal is
connected to one of the inlets, a number received in that inlet is ignored. The val-
ues are sampled once every signal vector.

Hz In either inlet: Sets the frequency input mode to Hz (the default).

linear In any inlet: Sets the frequency input mode to linear (0 - 1). Linear mode is simply
a scaled version of the standard Hz mode, except that values in the 0-1 range
traverse the full frequency range.

radians In any inlet: Sets the frequency input mode to radians (0 - 1). Radians mode lets
you set the center frequency directly—while the input has the same range (0-1),
the output has a curved frequency response that is closer to the exponential pitch
scale of the human ear.

Arguments
float Optional. Numbers set the initial gain, center frequency, and Q. The default val-

ues are 0 for gain, 0 for center frequency, and 0.01 for Q.

Hz Optional. Sets the frequency input mode to Hz (the default mode - hence this is
the same as providing no mode argument).

linear Optional. Sets the frequency input mode to linear (0 - 1).

radians Optional. Sets the frequency input mode to radians (0 - 1).
 500

svf~ State-variable filter
with simultaneous outputs
Output
signal The filtered input signal.

Examples

Four filter outputs are simultaneously available from the svf~ object

See Also

biquad~ Two-pole, two-zero filter
onepole~ Single-pole lowpass filter
501

 502

tanh~ Signal hyperbolic
tangent function

Input
signal Input to a hyperbolic tangent function.

Arguments
None.

Output
signal The hyperbolic tangent of the input.

Examples

Use tanh~ to generate periodic control signals

See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanx~ Signal tangent function

tanx~ Signal
tangent function

503

Input
signal Input to a tangent function.

Arguments
None.

Output
signal The tangent of the input.

Examples

Generate spikes (tangents increase exponentially as the input approaches π/2) using tanx~

See Also

acos~ Signal arc-cosine function
acosh~ Signal hyperbolic arc-cosine function
asin~ Signal arc-sine function
asinh~ Signal hyperbolic arc-sine function
atan~ Signal arc-tangent function
atanh~ Signal hyperbolic arc-tangent function
atan2~ Signal arc-tangent function (two variables)
cos~ Signal cosine function (0-1 range)
cosh~ Signal hyperbolic cosine function
cosx~ Signal cosine function
sinh~ Signal hyperbolic sine function
sinx~ Signal sine function
tanh~ Signal hyperbolic tangent function

 504

tapin~ Input to a delay line

Input
signal The signal is written into a delay line that can be read by the tapout~ object.

clear Clears the memory of the delay line. which may produce a click in the output.

Arguments
float or int Optional. The maximum delay time in milliseconds. This determines the size of

the delay line memory. If the sampling rate is increased after the object has been
created, tapin~ will attempt to resize the delay line. If no argument is present, the
default maximum delay time is 100 milliseconds.

Output
tap In order for the delay line to function, the outlet of tapin~ must be connected to

the left inlet of tapout~. It cannot be connected to any other object.

Examples

tapin~ creates a delay buffer from which to tap delayed signal

See Also

delay~ Delay line specified in samples
tapout~ Output from a delay line
Tutorial 27 Processing: Delay lines

tapout~ Output from a delay line
The outlet of a tapin~ object must be connected to the left inlet of tapout~ in order for the delay
line to function.

The tapout~ object has one or more inlets and one or more outlets. A delay time signal or number
received in an inlet affects the output signal coming out of the outlet directly below the inlet.

Input
signal If a signal is connected to an inlet of tapout~, the signal coming out of the outlet

below it will use a continuous delay algorithm. Incoming signal values represent
the delay time in milliseconds. If the signal increases slowly enough, the pitch of
the output will decrease, while if the signal decreases slowly, the pitch of the out-
put will increase. The continuous delay algorithm is more computationally
expensive than the fixed delay algorithm that is used when a signal is not con-
nected to a tapout~ inlet.

float or int If a signal is not connected to an inlet of tapout~, a fixed delay algorithm is used,
and a float or int received in the inlet sets the delay time of the signal coming out of
the corresponding outlet. This may cause clicks to appear in the output when the
delay time is changed. However, fixed delay is suitable for many applications such
as reverberation where delay times do not change dynamically, and it is computa-
tionally less expensive than the continuous delay algorithm.

list In left inlet: Allows several fixed delay times to be changed at the same time. The
first number in the list sets the delay time for the first outlet, and so on. If any
inlets corresponding to list values have signals connected to them, the values are
skipped.

Arguments
float or int Optional. One or more initial delay times in milliseconds, one for each delay “tap”

inlet-outlet pair desired. For example, the arguments 50 100 300 would create a
tapout~ object with three independent “taps” corresponding to three inlets and
three outlets. If a signal is connected to an inlet, the initial delay time correspond-
ing to that inlet-outlet pair is ignored.

Output
signal Each outlet of tapout~ corresponds to an individually controlled “tap” of a delay

line written by the tapin~ object. The output signal coming out of a tapout~ outlet
is the input to tapin~ delayed by the number of milliseconds specified by the
numerical or signal control received in the inlet directly above the outlet.
505

tapout~ Output from a delay line
Examples

tapout~ sends out the signal tapin~ receives, delayed by some amount of time

See Also

delay~ Delay line specified in samples
tapin~ Input to a delay line
Tutorial 27 Processing: Delay lines
 506

teeth~ Comb filter with feedforward
and feedback delay control
Input
signal In left inlet: Signal to be filtered. The teeth~ object is a variant of comb~—a comb

filter that mixes the current input sample with earlier input and/or output samples
to accentuate and attenuate the input signal at regularly spaced frequency inter-
vals. Unlike the comb~ object, teeth~ adds feedforward and feedback, which adds
to the extremity of the effect.

In 2nd inlet: Feedforward—the delay, in milliseconds, before past samples of the
input are added to the current input.

In 3rd inlet: Feedback—The delay, in milliseconds, before past samples of the
output are added to the current input.

In 4th inlet: Gain coefficient for scaling the amount of the input sample to be sent
to the output.

In 5th inlet: Gain coefficient for scaling the amount of feedforward to be sent to
the output.

In right inlet: Gain coefficient for scaling the amount of feedback to be sent to the
output.

float or int The filter parameters in inlets 2 to 6 may be specified by a float instead of a signal.
If a signal is also connected to the inlet, the float is ignored.

list The six parameters can be provided as a list in the left inlet. The first number in
the list is the feedforward delay, the next number is the feedback delay, the third
number is the Gain coefficient for the input sample, the fourth number is the
feedforward gain coefficient, and the fifth number is the feedback gain coefficient.
If a signal is connected to a given inlet, the coefficient supplied in the list for that
inlet is ignored.

clear Clears the teeth~ object’s memory of previous outputs, resetting them to 0.

Arguments
float Optional. Up to six numbers, to set the feedforward and feedback delays, the gain

coefficient, and the feedforward and feedback gain coefficients. If a signal is con-
nected to a given inlet, the coefficient supplied as an argument for that inlet is
ignored. If no arguments are present, the maximum delay time defaults to 10 mil-
liseconds, and all other values default to 0.

Output
signal The filtered signal.
507

teeth~ Comb filter with feedforward
and feedback delay control
Examples

teeth~ does comb filtering on an input signal with variable feedforward and feedback delays

See Also

allpass~ Allpass filter
comb~ Comb filter
delay~ Delay line specified in samples
reson~ Resonant bandpass filter
 508

thispoly~ Control poly~
voice allocation and muting
The thispoly~ object is placed inside a patcher loaded by the poly~ object. It sends and receives
messages from the poly~ object that loads it.

Input
bang Reports the instance number of the patch. The first instance is reported as 1.

signal A signal input can be used to set the “busy” state of the patcher instance. When an
incoming signal is non-zero, the busy state for the patcher instance is set to 1.
When no signal is present, the busy state is set to 0.

int A value of 0 or 1 toggles the “busy” state off or on for the patcher instance. When
“busy” (i.e., set to 1) the object will not receive messages generated by a note or
midinote message to the left inlet of the parent poly~ object.

mute The mute message toggles the DSP for the loaded instance of the patcher on (0)
and off (1). This message can be combined with an int message which toggles the
“busy” state of the patcher to create voices in a patcher which are only on while
they play a “note”.

Arguments
None.

Output
int Out left outlet: The instance number, starting at 1, reported when thispoly~

receives the bang message. If the patcher containing thispoly~ was not loaded
within a poly~ object, 0 is output.

int Out right outlet: If the loaded instance of the patcher is muted, a 1 is output. If the
instance is not muted, a 0 is output.

Examples

thispoly~ reports the instance number of its poly~ subpatcher
509

thispoly~ Control poly~
voice allocation and muting
See Also

in Message input for a patcher loaded by poly~
in~ Signal input for a patcher loaded by poly~
out Message output for a patcher loaded by poly~
out~ Signal output for a patcher loaded by poly~
poly~ Polyphony/DSP manager for patchers
Tutorial 21 MIDI control: Using the poly~ object
 510

thresh~ Detect signal
above a set level

511

Input
signal In left inlet: A signal whose level you want to detect.

float In middle inlet: Sets the lower (“reset”) threshold level for the input signal. When
a sample in the input signal is greater than or equal to the upper (“set”) level,
thresh~ sends out a signal of 1 until a sample in the input signal is less than or
equal to this reset level.

In right inlet: Sets the upper (“set”) threshold level for the input signal. When the
input is equal to or greater than this value, thresh~ sends out a signal of 1.

Arguments
float The first argument specifies the reset or low threshold level. If no argument is

present, the reset level is 0. The second argument specifies the set or high thresh-
old level. If no argument is present, the set level is 0.

If only one argument is present, it specifies the reset level, and the set level is 0.

Output
signal When a sample in the input signal is greater than or equal to the upper threshold

level, the output is 1. The output continues to be 1 until a sample in the input sig-
nal is equal to or less than the reset level. If the set level and the reset level are the
same, the output is 1 until a sample in the input signal is less than the reset level.

Examples

Detect when signal exceeds a certain level

See Also

>~ Is greater than, comparison of two signals
change~ Report signal direction
edge~ Detect logical signal transitions

train~ Pulse train generator
Input
signal In left inlet: Specifies the period (time interval between pulse cycles), in millisec-

onds, of a pulse train sent out the left outlet.

In middle inlet: Controls the pulse width or duty cycle. The signal values repre-
sent a fraction of the pulse interval that will be devoted to the “on” part of the
pulse (signal value of 1). A value of 0 has the smallest “on” pulse size (usually a sin-
gle sample), while a value of 1 has the largest (usually the entire interval except a
single sample). A value of .5 makes a pulse with half the time at 1 and half the time
at 0.

In right inlet: Sets the phase of the onset of the “on” portion of the pulse. A value
of 0 places the “on” portion at the beginning of the interval, while other values (up
to 1, which is the same as 0) delay the “on” portion by a fraction of the total inter-
pulse interval.

float or int Numbers can be used instead of signal objects to control period, pulse width, and
phase. If a signal is also connected to the inlet, float and int messages are ignored.

Arguments
float or int Optional. Initial values for inter-pulse interval in milliseconds (default 1000),

pulse width (default 0.5), and phase (default 0). If signal objects are connected to
any of the train~ object’s inlets, the corresponding initial argument value is
ignored.

Output
signal Out left outlet: A pulse (square) wave train having the specified interval, width,

and phase.

bang Out right outlet: When the “on” portion of the pulse begins, a bang is sent out the
right outlet. Using this outlet, you can use train~ as a signal-synchronized metro-
nome with an interval specifiable as a floating-point (or signal) value. However,
there is an unpredictable delay between the “on” portion of the pulse and the
actual output of the bang message, which depends in part on the current Max
scheduler interval. The delay is guaranteed to be a millisecond or less if the sched-
uler interval is set to 1 millisecond.
 512

train~ Pulse train generator
Examples

Provide an accurate pulse for rhythmic changes in signal

See Also

<~ Is less than, comparison of two signals
>~ Is greater than, comparison of two signals
clip~ Limit signal amplitude
phasor~ Sawtooth wave generator
513

trapezoid~ Trapezoidal
wavetable
Input
signal or float In left inlet: Any float or signal or an input signal progressing from 0 to 1 is used to

scan the trapezoid~ object’s wavetable. The output of a phasor~ or some other
audio signal can be used to control trapezoid~ as an oscillator, treating the con-
tents of the wavetable as a repeating waveform.

In middle inlet: The ramp up portion of the trapezoidal waveform, specified as a
fraction of a cycle between 0 and 1.0. The default is .1.

In right inlet: The ramp up portion of the trapezoidal waveform, specified as a
fraction of a cycle between 0 and 1.0. The default is .9.

lo In left inlet: The word lo, followed by an optional number, sets the minimum
value of trapezoid~ for signal output. The default value is 0.

hi In left inlet: The word hi, followed by an optional number, sets the maximum
value of trapezoid~ for signal output. The default value is 1.0.

Arguments
float Optional. Two floating-point values can be used to specify the ramp up and ramp

down values. The arguments 0. 0. produce a ramp waveform, and .5 .5 produces a
triangle waveform.

Output
signal A signal which corresponds to the value referenced by the trapezoid~ object’s

input signal. If the output of a phasor~ or some other audio signal is used to scan
the trapezoid~ object, the output will be a periodic waveform.
 514

trapezoid~ Trapezoidal
wavetable
Examples

trapezoid~ generates a trapezoidal waveform that lets you specify
the phase points at which it changes direction

See Also

buffer~ Store audio samples
cos~ Cosine function
phasor~ Sawtooth wave generator
wave~ Variable-size wavetable
Tutorial 2 Fundamentals: Adjustable oscillator
Tutorial 3 Fundamentals: Wavetable oscillator
515

triangle~ Triangle/ramp
wavetable
Input
signal or float In left inlet: Any signal, float, or an input signal progressing from 0 to 1 is used to

scan the triangle~ object’s wavetable. The output of a phasor~ or some other audio
signal can be used to control triangle~ as an oscillator, treating the contents of the
wavetable as a repeating waveform.

In right inlet: Peak value phase offset, expressed as a fraction of a cycle, from 0 to
1.0. The default is .5. Scanning through the triangle~ object’s wavetable using out-
put of a phasor~ with a phase offset value of 0 produces a ramp waveform, and a
phase offset of 1.0 produces a sawtooth waveform.

lo In left inlet: The word lo, followed by an optional number, sets the minimum
value of triangle~ for signal output. The default value is -1.0.

hi In left inlet: The word hi, followed by an optional number, sets the maximum
value of triangle~ for signal output. The default value is 1.0.

Arguments
float Optional. In right inlet: Peak value phase offset, expressed as a fraction of a cycle,

from 0 to 1.0. The default is .5. A value of 0 produces a ramp waveform when the
triangle~ object is driven by a phasor~, and a value of 1.0 produces a sawtooth
waveform.

Output
signal A signal which corresponds to the value referenced by the triangle~ object’s input

signal. If the output of a phasor~ or some other audio signal is used to scan the
triangle~ object, the output will be a periodic waveform.
 516

triangle~ Triangle/ramp
wavetable
Examples

triangle~ lets you generate ramping waveforms with different reversal points

See Also

buffer~ Store audio samples
cos~ Cosine function
phasor~ Sawtooth wave generator
trapezoid~ Trapezoidal wavetable
wave~ Variable-size wavetable
Tutorial 2 Fundamentals: Adjustable oscillator
Tutorial 3 Fundamentals: Wavetable oscillator
517

 518

trunc~ Truncate fractional signal values

Input
signal A signal whose values will be truncated. The trunc~ object converts signals with

fractional values to the nearest lower integer value (e.g., a value of 1.75 is truncated
to 1.0, and -1.75 is truncated to -1.0). This object is simple but computationally
expensive.

Arguments
None.

Output
signal The truncated input signal.

Examples

trunc~ takes floating-point signals and truncated the fractional part

clip~ Limit signal amplitude
round~ Round an input signal value

vectral~ Vector-based
envelope follower
Input
signal In left inlet: Accepts a sync signal for the output index of the vector. This is typi-

cally in the range of 0 to n-1 where n is the size of the vector.

In middle inlet: A sync signal received in the middle inlet is used to synchronize
the input index of the vector being processed. The sync signal will typically be in
the range 0 to n-1 where n is the size of the vector. If the range of the sync signal is
different than the output index, the incoming vector will be “bin-shifted” by the
difference between the two signals.

In right inlet: Signal data to be filtered. This will usually be frequency-domain
information such as the output of an fft~ or fftin~ object.

rampsmooth In left inlet: The word rampsmooth, followed by two ints, causes the vector to be
smoothed in a linear fashion across successive frames. The arguments specify the
number of frames to use to interpolate values in both directions. This is equiva-
lent to the time-domain filtering done by the rampsmooth~ object.

size In left inlet: The word size, followed by a number, sets the vector size for the opera-
tion. The default is 512.

slide In left inlet: The word slide, followed by two floats, causes vectral~ to do logarith-
mic interpolation of successive vectors in a manner equivalent to the time-
domain slide~ object. The two arguments determine the denominator coefficient
for the amount of the slide.

deltaclip In left inlet: The word deltaclip, followed by two floats, limits the change in bins of
successive vectors to the values given. This is equivalent to the time-domain delta-
clip~ object.

Arguments

int Optional. The argument is the vector size for the operation. It defaults to 512, but
should be set appropriately for the size of the vectors you feed into the vectral~
object.

Output
signal A smoothed version of the signal input into the right inlet, according to the

parameters given to the vectral~ object.
519

vectral~ Vector-based
envelope follower
Examples

vectral~ performs different types of smoothing between frames of vectored data (e.g., FFT signals)

See Also

cartopol Cartesian to Polar coordinate conversion
cartopol~ Signal Cartesian to Polar coordinate conversion
deltaclip~ Limit changes in signal amplitude
fft~ Fast Fourier transform
fftin~ Input for a patcher loaded by pfft~
fftinfo~ Report information about a patcher loaded by pfft~
fftout~ Output for a patcher loaded by pfft~
frameaccum~ Compute “running phase” of successive phase deviation frames
framedelta~ Compute phase deviation between successive FFT frames
ifft~ Inverse Fast Fourier transform
pfft~ Spectral processing manager for patchers
poltocar Polar to Cartesian coordinate conversion
poltocar~ Signal Polar to Cartesian coordinate conversion
rampsmooth~ Smooth an incoming signal
slide~ Filter a signal logarithmically
Tutorial 26 Frequency Domain Signal Processing with pfft~
 520

vst~ Host VST plug-ins
Note: The vst~ object does not work with VST plug-ins created in Max/MSP.

Input
signal Input to be processed by the plug-in. If the plug-in is an instrument plug-in, the

input will be ignored.

int In left inlet: Changes the effect program of the currently loaded plug-in. The first
program is number 1.

float Converted to int.

list In left inlet: Changes a parameter value in the currently loaded plug-in. The first
list element is the parameter number (starting at 1) and the second element is the
parameter value. The second number should be a float between 0 and 1, where 0
is the minimum value of the parameter and 1 is the maximum.

any symbol A symbol that names a plug-in parameter followed by a float between 0 and 1 set
the value of the parameter.

bypass The word disable, followed by a non-zero argument, stops any further processing
by the currently loaded plug-in and copies the object's signal input to its signal
output. bypass 0 enables processing for the plug-in.

disable The word disable, followed by a non-zero argument, stops any further processing
by the currently loaded plug-in and outputs a zero signal. disable 0 enables pro-
cessing for the plug-in.

get The word get, followed by a number argument, reports plug-in information out
the plug-in's third outlet. If the number argument is between 1 and the number of
parameter's of the currently loaded plug-in, the get message outputs the value of
the numbered parameter (a number between 0 and 1). If the argument is 0 or
negative, the get message produces the following information out the fourth out-
let:

get -1 The plug-in's number of inputs
get -2 The plug-in's number of outputs
get -3 The plug-in's number of programs
get -4 The plug-in's number of parameters
get -5 Whether the plug-in's canMono flag is set. This indicates that the plug-in

can be used in either a stereo or mono context
get -6 1 if the plug-in has its own edit window, 0 if it doesn't
get -7 1 if the plug-in is a synth plug-in, 0 if it isn’t

midievent The word midievent, followed by two to four numbers, sends a MIDI event to the
plug-in. The first three number arguments are the bytes of the MIDI message.
521

vst~ Host VST plug-ins
The fourth, optional, argument is a detune parameter used for MIDI note mes-
sages. The value ranges from -63 to 64 cents, with 0 being the default.

mix In left inlet: mix 1 turns mix mode on, in which the plug-in's output is added to the
input. mix 0 turns mix mode off. When mix mode is off, the plug-in's output is not
added to the input. Only the plug-in's output is sent to the vst~ object's signal
outlets.

open Opens the plug-in's edit window.

params The word params causes a list of the plug-in's parameters to be sent out the fourth-
from-right outlet.

pgmnames The word pgmnames causes a list of the plug-in's current program names to be sent
out the right outlet.

plug In left inlet: The word plug with no arguments opens a standard open file dialog
allowing you to choose a new VST plug-in to host. The word plug followed by a
symbol argument searches for VST plug-in with the specified name in the Max
search path as well as a folder called VstPlugIns inside the Max application folder.
If a new plug-in is opened and found, the old plug-in (If any) is discarded and the
new one loaded.

read With no arguments, read opens a standard open file dialog prompting for a file of
effect programs, either in bank or individual program format. read accepts an
optional symbol argument where it looks for a VST plug-in bank or effect pro-
gram file in the Max search path.

set In left inlet: The word set, followed by a symbol, changes the name of the effect
current program to the symbol.

settitle In left inlet: The word settitle, followed by a symbol, changes the title displayed for
the name of the plug-in’s edit window.

wclose Closes the plug-in's edit window.

write With no arguments, write opens a standard Save As dialog box prompting you to
choose the name and type of the effect program file (single program or bank).
write accepts an optional symbol argument that specifies a full or partial destina-
tion pathname. An individual program file is written in this case.

writebank With no arguments, writebank opens a standard Save As dialog box prompting you
to choose the name of the effect program bank file. writebank accepts an optional
symbol argument that specifies a full or partial destination pathname.

writepgm With no arguments, writepgm opens a standard Save As dialog box prompting you
to choose the name of the individual effect program file. writepgm accepts an
optional symbol argument that specifies a full or partial destination pathname.
 522

vst~ Host VST plug-ins
Arguments
int Optional. If the first or first and second arguments are numbers, they set the

number of audio inputs and outputs. If there is only one number, it sets the num-
ber of outlets. If there are two numbers, the first one sets the number of inlets and
the second sets the number of outlets.

symbol Optional. Sets the name of a VST plug-in file to load when the object is created.
You can load a plug-in after the object is created (or replace the one currently in
use) with the plug message.

symbol Optional. After the plug-in name, a name containing preset effects for the plug-in
can be specified. If found, it will be loaded after the plug-in has been loaded.

Output
signal Out left outlet and other signal outlets as defined by the number of outputs argu-

ment: Audio output from the plug-in. The left outlet is the left channel (or chan-
nel 1).

symbol Out fourth-from-right outlet: The plug-in's parameters are sent out as a series of
symbols in response to the params message.

Note: Some plug-ins, especially those with their own editors, fail to name the
parameters.

int or float Out third-from-right outlet: Parameter values or plug-in informational values in
response to the get message.

int Out second-from-right outlet: Raw MIDI bytes received by the plug-in (but not
any MIDI messages received using the midievent message).

symbol Out right outlet: A series of symbols are sent out in response to the pgmnames mes-
sage. If there are no program names, the message pgmnames: Default is output.

Examples

Process an audio signal with a VST plug-in
523

vst~ Host VST plug-ins
See Also

rewire~ Host ReWire devices
 524

wave~ Variable size
wavetable
Input
signal In left inlet: Input signal values progressing from 0 to 1 are used to scan a specified

range of samples in a buffer~ object. The output of a phasor~ can be used to con-
trol wave~ as an oscillator, treating the range of samples in the buffer~ as a repeat-
ing waveform. However, note that when changing the frequency of a phasor~
connected to the left inlet of wave~, the perceived pitch of the signal coming out
of wave~ may not correspond exactly to the frequency of phasor~ itself if the
stored waveform contains multiple or partial repetitions of a waveform. You can
invert the phasor~ to play the waveform backwards.

In middle inlet: The start of the waveform as a millisecond offset from the begin-
ning of a buffer~ object’s sample memory.

In right inlet: The end of the waveform as a millisecond offset from the beginning
of a buffer~ object’s sample memory.

float or int In middle or right inlets: Numbers can be used instead of signal objects to control
the start and end points of the waveform, provided a signal is not connected to the
inlet that receives the number. The wave~ object uses the buffer~ sampling rate to
determine loop points.

enable In left inlet: The message enable 0 disables the object, causing it to ignore subse-
quent signal input(s). The word enable followed by any non-zero number enables
the object once again.

interp The word interp, followed by a number in the range 0-2, sets the wavetable inter-
polation mode. The interpolation modes are:

value description

0 No interpolation. Wavetable interpolation is disabled using the interp 0
message.

1 High-quality linear interpolation (default)

2 Low-quality linear interpolation. This mode uses the interpolation
method found in MSP 1.x versions of the wave~ object. While this mode
is faster than mode 1, it cannot play buffer~ objects of arbitrary length
and produces more interpolation artifacts.

set In left inlet: The word set, followed by a symbol, sets the buffer~ used by wave~ for
its stored waveform. The symbol can optionally be followed by two values setting
new waveform start and end points. If the values are not present, the default start
and end points (the start and end of the sample) are used. If signal objects are
connected to the start and/or end point inlets, the start and/or end point values
are ignored.
525

wave~ Variable size
wavetable
Arguments
symbol Obligatory. Names the buffer~ object whose sample memory is used by wave~ for

its stored waveform. Note that if the underlying data in a buffer~ changes, the sig-
nal output of wave~ will change, since it does not copy the sample data in a
buffer~. wave~ always uses the first channel of a multi-channel buffer~.

float or int Optional. After the buffer~ name argument, you can type in values for the start
and end points of the waveform, as millisecond offsets from the beginning of a
buffer~ object’s sample memory. By default the start point is 0 and the end point is
the end of the sample. If you want to set a non-zero start point but retain the sam-
ple end as the waveform end point, use only a single typed-in argument after the
buffer~ name. The wave~ object uses the buffer~ sampling rate to determine loop
points. If a signal is connected to the start point (middle) inlet, the initial wave-
form start point argument is ignored. If a signal is connected to the end point
(right) inlet, the initial waveform end point is ignored. An additional optional
integer can used to specify the number of channels in the buffer~ file.

int Optional. Sets the number of output channels, which determines the number of
outlets that the wave~ object will have. The maximum number of signal outputs is
4. If the buffer~ object being played by wave~ has more channels than the number
of outputs of wave~, the extra channels are not played. If the buffer~ object has
fewer channels, the extra wave~ signal outputs are 0.

Output
signal The portion of the buffer~ specified by the wave~ object’s start and end points is

scanned by signal values ranging from 0 to 1 in the wave~ object’s inlet, and the
corresponding sample value from the buffer~ is sent out the wave~ object’s outlet.
If the signal received in wave’s inlet is a repeating signal such as a sawtooth wave
from a phasor~, the resulting output will be a waveform (excerpted from the
buffer~) repeating at the frequency corresponding to the repetition of the input
signal.

Examples

Loop through part of a sample, treating it as a variable-size wavetable
 526

wave~ Variable size
wavetable
See Also

2d.wave~ Two-dimensional wavetable
buffer~ Store audio samples
buffir~ Buffer-based FIR filter
groove~ Variable-rate looping sample playback
phasor~ Sawtooth wave generator
play~ Position-based sample playback
Tutorial 15 Sampling: Variable-length wavetable
527

waveform~ buffer~ viewer
and editor
Input
float In left inlet: Sets the display start time in milliseconds. Changing this value will

offset and/or zoom the view, so that the requested time in the buffer~ sample data
is aligned to the left edge of the display. The default is 0 (display starts at the
beginning of the target buffer~).

In 2nd inlet: Sets the display length in milliseconds. The default is the length of
the buffer~.

In 3rd inlet: Sets the start time of the selection range in milliseconds.

In 4th inlet: Sets the end time of the selection range in milliseconds.

list In 5th inlet: The 5th inlet provides a link input, which allows any number of wave-
form~ objects to share their start, length, select start, and select end values.
Whenever any of these values changes, waveform~ sends them all as a list out its
right outlet. If this outlet is connected to the link input of another waveform~
object, it will be updated as it receives the lists.

To complete the circuit, the second waveform~ object’s list output can be con-
nected to the link input of the first. Then, changes in either one (via mouse clicks,
etc.) will be reflected in the other. This is mainly useful when the waveform~
objects are viewing different channels of the same buffer~. Any number of
waveform~ objects can be linked in this fashion, forming one long, circular chain
of links. In this case waveform~ will prevent feedback from occurring.

bpm The word bpm, followed by one or two numbers, sets the reference tempo and
number of beats per bar used by the waveform~ display. The first argument sets
the tempo in beats per minute. The default is 120. The second argument is
optional, and specifies the number of beats per bar. The default is 4. The bpm mes-
sage automatically changes the display time unit to bpm, as if you had sent the
message unit bpm. Time values are shown in bars and beats, with subdivisions of
the beat displayed in floating-point. The offset message can be useful to align the
metric information with the contents of the target buffer~. waveform~ can calcu-
late a tempo based on the current selection with the setbpm message.

brgb The word brgb, followed by three numbers in RGB format, sets the background
color used to paint the entire object rectangle before the rest of the display com-
ponents are drawn on top.

clipdraw The word clipdraw, followed by a 1, will cause values being edited in draw mode to
be clipped to the range of the display (as determined by the vzoom message). clip-
draw 0 disables clipping, allowing values to be scaled freely beyond the range of the
window. The default is 0, no clipping.

constrain The constrain message should be followed by an int argument to toggle alternate
behavior of the waveform~ interface. The effect varies according to the current
 528

waveform~ buffer~ viewer
and editor
mode (determined by the mode message), but it generally produces the same
behavior that would be expected from holding down the shift key during mouse
activity. For example, clicks in select mode are interpreted as incremental selec-
tions (setting only the nearest endpoint of the selection range); buffer~ naviga-
tion in move mode is restricted to horizontal panning, with no zoom; selection
length in loop mode is maintained regardless of vertical mouse movement. Obvi-
ously, this message is intended to implement this behavior where appropriate.
Any non-zero int argument enables constrained interface activity. A zero, or no
argument at all, disables constraint and returns to the default behavior.

crop The crop message will trim the audio data in the target buffer~ to the current selec-
tion. It resizes the buffer~ to the selection length, copies the selected samples into
it, and displays the result at default settings. The buffer~ is erased, except for the
selected range. This is a “destructive edit,” and cannot be undone.

frgb The word frgb, followed by three numbers in RGB format, sets the foreground
color used to draw the buffer~ data as a waveform graph.

grid The word grid, followed by an int or float, specifies the spacing of the vertical grid
lines, relative to the current time measurement unit. For example, when wave-
form~ is using milliseconds to display time values, the message, grid 1000 will
cause grid lines to be drawn 1000 milliseconds apart in the waveform~ display. If
labels are enabled, they will be drawn at the top of these grid lines. If tick marks
are enabled, they will be drawn between these grid lines. An argument of 0 or no
argument disables the grid lines.

labels The word labels, followed by an int, enables (1) or disables (0) the numerical labels
of time measurement across the top of the display. Any non-zero int causes the
labels to be drawn. An argument of 0, or no argument, disables them.

mode The word mode, followed by a symbol argument, determines how the waveform~
object responds to mouse activity. Valid symbol arguments are none, select, loop,
move, and draw.

none Causes waveform~ to enter a “display only” mode, in which click-
ing and dragging have no effect. For convenience, and to add
custom interface behavior, mouse activity is still sent according
to the mouseoutput mode. A mode message with no argument has
the same effect as mode none.

select Sets the default display mode of the waveform~ object. In select
mode, the cursor appears as an I-beam within the waveform~
display area. You can click and drag with the mouse to select a
range of values. Mouse activity will cause waveform~ to generate
update messages, according to the mouseoutput setting.
529

waveform~ buffer~ viewer
and editor
loop Sets an alternative loop selection style that uses vertical mouse
movement to grow and shrink the selection length, while hori-
zontal movement is mapped to position. This works well to con-
trol a groove~ object, as demonstrated in the waveform~.help
file. When loop mode is selected, moving your cursor inside the
display area changes its appearance to a double I-beam.

move Sets the move display mode of the waveform~ object. This mode
allows you to navigate the waveform~ view. Vertical mouse move-
ment lets you zoom in and out, while horizontal movement
scrolls through the time range of the x-axis. Clicking on a point
in the graph makes it the center reference point for the rest of the
mouse event (until the mouse button is released). This lets you
“grab” a spot and zoom in on it without having to constantly re-
center the display.

draw Sets the draw display mode of the waveform~ object. This mode
allows you to edit the values of the target buffer~, using a pencil
tool. Clicking and dragging in draw mode directly changes the
buffer~ samples, and can not be undone. Sample values are inter-
polated linearly as you drag, resulting in a continuous change,
even if you are zoomed out too far to see the individual samples.

mouseoutput The word mouseoutput, followed by a symbol argument, determines when selec-
tion start and end values are sent in response to mouse activity. Only the selection
start and end (outlets 3 and 4) are affected. Mouse information is always sent
from outlet 5, regardless of the mouseoutput mode. Valid symbol arguments are,
none, down, up, downup, and continuous.

none Selection start and end values are not sent in response to mouse
activity. Sending the mouseoutput message with no argument
has the same effect as the symbol (none).

down Causes the current selection start and end values to be sent (from
outlets 3 and 4) only when you click inside the waveform~.

up Causes selection start and end to be sent only when you release
the mouse button, after clicking inside the waveform~.

downup Causes selection start and end to be sent both when you click
inside the waveform~, and when the mouse button is released.

continuous Causes selection start and end to be sent on click, release, and
throughout the drag operation, whenever the values change.
 530

waveform~ buffer~ viewer
and editor
normalize The word normalize, followed by a float, will scale the sample values in the target
buffer~ so that the highest peak matches the value given by the argument. This
can cause either amplification or attenuation of the audio, but in either case, every
buffer~ value is scaled, and this activity cannot be undone.

norulerclick The word norulerclick, followed by an int, disables (1) or enables (0) clicking and
dragging in the ruler area of the waveform~ display. The default is enabled.

offset The word offset, followed by a float, causes all labels and time measurement mark-
ings to be shifted by the specified number of milliseconds. Snap behavior is
shifted as well. offset can be removed by sending the message offset 0., or the offset
message with no argument.

rgb2 The rgb2, followed by three numbers in RGB format, is applied to the selection
rectangle, which identifies the selection range.

rgb3 The word rgb3, followed by three numbers in RGB format, sets the frame color,
used to draw the single-pixel frame around the object rectangle and the label area.

rgb4 The word rgb4, followed by three numbers in RGB format, sets the label text color.

rgb5 The word rgb5, followed by three numbers in RGB format, sets the label back-
ground color.

rgb6 The word rgb6, followed by three numbers in RGB format, applies the color to
tickmarks and measurement lines (if enabled).

rgb7 The word rgb7, followed by three numbers in RGB format, sets the selection rect-
angle “OpColor”. The selection rectangle is painted using rgb2 as a foreground
color, as specified above. However, the transfer mode during this operation is set
to “blend,” with rgb7 as an OpColor. Experiment with different combinations of
rgb2 and rgb7 to see how they affect color and opacity differently. Shades of gray
can be useful here.

set The word set, followed by a symbol or int which is the name of a buffer~ object,
links waveform~ to the target buffer~, which is drawn with default display values.
An optional int argument sets the channel offset, for viewing multi-channel
buffer~ objects. The name of the linked buffer~ is not saved with the Max patch,
so should be stored externally if necessary.

setbpm The word setbpm, with no arguments, causes waveform~ to calculate a tempo
based on the current selection range. It automatically changes the display time
unit to bpm, as if you had sent the message unit bpm. A tempo is selected such that
the selection range constitutes a logical multiple or subdivision of the bar, pre-
serving the current beats per bar value, and attempting to find the closest value to
the current tempo that satisfies its criteria. When a suitable tempo is selected, the
531

waveform~ buffer~ viewer
and editor
offset parameter is adjusted so that the start time of the selection range falls
exactly on a bar line.

The result is that the selection area will be framed precisely by a compatible
tempo. One use of this technique is to quickly establish time labels and tick marks
for a section of audio. After selecting a bar as accurately as possible, sending the
setbpm message and turning on snap to label allows immediate quantization of the
selection range to metric values.

If the target buffer~ contains an audio segment that is already cropped to a logical
number of beats or bars, the best technique is to select the entire range of the
buffer~ (with messages to the select start and end inlets), followed by the setbpm
message. If the buffer~ is cropped precisely, the resulting tempo overlay should be
quite accurate, and immediately reveal the tempo along with metric information.

When a new tempo is calculated, it is sent from the rightmost outlet (the link out-
let), to update any linked waveform~ objects, and to be used in whatever manner
required by the surrounding patch.

snap The word snap, followed by a symbol argument, Sets the snap mode of the wave-
form~ selection range. snap causes the start and end points of the selection to
automatically move to specific points in the buffer~, defined by the snap mode.
Possible arguments are none, grid, and zero.

none Disables snap to allow free selection. This is the default. The snap
message with no argument has the same effect.

grid Specifies that the selection start and end points should snap to
the vertical grid lines, as set by the grid message. Since the spacing
of the grid lines is affected by the current time measurement unit,
and by the offset value (if an offset has been specified), snap to
grid will be affected by these parameters as well.

 tick Causes the selection start and end to snap to the tick divisions
specified by the ticks message.

zero Instead of snapping the selection to a uniform grid, this mode
searches for zero-crossings of the buffer~ data. These are defined
as the points where a positive sample follows a negative sample, or
vice-versa. This can be useful to find loop and edit points.

ticks The word ticks, followed by a number, specifies the number of ticks that should be
drawn between each grid line. The default is eight. An argument of 0, or no argu-
ment, disables the tick marks.

undo This mode works for waveform~ selection only. It causes the selection start and
end points to revert to their immediately previous values. This is helpful when
 532

waveform~ buffer~ viewer
and editor
you are making fine editing adjustments with the mouse and accidentally click in
the wrong place, or otherwise cause the selection to change unintentionally.
Repeated undo commands will toggle between the last two selection states.

unit The word unit, followed by a symbol argument, sets the unit of time measurement
used by the display. Valid symbol arguments are ms, samples, phase, and bpm.

ms Sets the display unit to milliseconds. This is the default.

samples Causes time values to be shown as sample positions in the target
buffer~. The first sample is numbered 0, unless the display has
been shifted by the offset message.

phase Causes time to be displayed according to phase within the
buffer~, normalized so that the 0 refers to the first sample, and 1
refers to the last. This type of measurement unit is especially rele-
vant when working with objects that use 0-1 signal sync, such as
phasor~ and wave~.

bpm Specifies beats per minute as the time reference unit, relative to a
master tempo and number of beats per bar, both of which you
can set with the bpm message. waveform~ can also calculate a
tempo that fits your current selection, via the setbpm message.

vlabels The word vlabels, followed by an int, enables or disables the vertical axis labels
along the rightmost edge of the waveform~ display. Any non-zero number causes
the labels to be drawn. An argument of 0, or no argument, disables them.

voffset The word voffset, followed by a float, sets the vertical offset of the waveform~ dis-
play. A value of 0. places the x-axis in the middle, which is the default.

vticks The word vticks, followed by an int, enables or disables the vertical axis tick marks
along the left and right edges of the waveform~ display. Any non-zero int causes
the tick marks to be drawn. An argument of 0, or no argument, disables them.

vzoom The word vzoom, followed by a float, sets the vertical scaling of the waveform~ dis-
play.

Inspector
The behavior of a waveform~ object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show Floating
Inspector from the Windows menu, selecting any waveform~ object displays the
waveform~ Inspector in the floating window. Selecting an object and choosing
Get Info… from the Object menu also displays the Inspector.
533

waveform~ buffer~ viewer
and editor
The waveform~ Inspector lets you set the following attributes:

The Snap pull-down menu sets the snap mode of the waveform~ selection range.
snap causes the start and end points of the selection to automatically move to spe-
cific points in the buffer~, defined by the snap mode. Possible arguments are none
(the default), grid, and zero. This corresponds to the snap message, above.

The Grid section of the Inspector is used to set an offset, in milliseconds. All labels
and time measurement markings are shifted by the specified number of millisec-
onds (default 0). The grid option is used to specify the spacing of the vertical grid
lines (default 1000.) relative to the current time measurement unit. A value of 0 dis-
ables the grid lines.

The Tempo section of the Inspector is used to set a tempo value for the display in
BPM (beats per Minute). The default value is 120.n offset, in milliseconds. All
labels and time measurement markings are shifted by the specified number of
milliseconds (default 0). The grid option is used to specify the spacing of the ver-
tical grid lines (default 1000.) relative to the current time measurement unit. A
value of 0 disables the grid lines.

The setbpm button is used to automatically set the tempo for BPM display. this is
similar to setting the PBM, except that waveform~ object determines the new
tempo. It finds the nearest tempo that “fits” the current selection - meaning that
the selection length will be exactly one beat, one bar, or multiple (powers of 2)
bars.

The Ticks section of the Inspector is used to display timing labels and markers
(ticks) in the waveform~ object display. Checking the labels checkbox turns on the
numerical time display (default is on). Checking the vlabels checkbox turns on
the vertical tick mark labels (default is off). Checking the ticks checkbox turns on
the tick mark display beneath the time labels (default is on). Checking the vticks
checkbox turns on the vertical tick marks (default is on).

The Edit Mode pull-down menu is used to set the display modes of the waveform~
object used when selecting and editing. The default is select mode (see the mode
message above).

Mouse Output pull-down menu determines when mouse activity triggers the dis-
play and selects output (see the output message above). The default mode is con-
tinuous.

The Edit Mode pull-down menu is used to set the display modes of the waveform~
object. The default is select mode (see the mode message above).

The Color pull-down menu lets you use a swatch color picker or RGB values to
specify the colors used for display by the waveform~ object.
 534

waveform~ buffer~ viewer
and editor
 The Revert button undoes all changes you've made to an object's settings since
you opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments
None.

Output
float Out 1st outlet: The display start time of the waveform in milliseconds.

Out 2nd outlet: The display length in milliseconds.

Out 3rd outlet: The start time of the selection range in milliseconds.

Out 4th outlet: The end time of the selection range in milliseconds.

list Out 5th outlet: This is the mouse outlet, which sends information about mouse
click/drag/release cycles that are initiated by clicking within the waveform~
object. The list contains three numbers.

The first number is a float specifying the horizontal (x) position of the mouse, in
0-1 scale units relative to the waveform~ object. x is always 0 at the left edge of the
waveform~, and 1. at the right edge.

The second number in the list is the floating-point y value of the mouse, scaled to
match the buffer~ values. With the default vzoom = 1. and voffset = 0., the top of the
waveform~ gives a y value of 1, and the bottom is -1.

Finally, the third number in the list is an int that indicates which portion of the
mouse event is currently taking place. On mouse down, or click, this value is 1.
During the drag, it is 2, and on mouse up it is 3. These can be helpful when creat-
ing custom responses to mouse clicks. Note that a drag (2) message is sent imme-
diately after the mouse down (1) message, whether the mouse has moved or not,
to indicate that the drag segment has begun.

Out 6th outlet: waveform~ outputs a list containing its display start time, display
length, selection start time, and selection end time, whenever one of these values
changes (by mouse activity, float input, etc.). See the link input information
above for more information.
535

waveform~ buffer~ viewer
and editor
Examples

waveform~ lets you view, select, and edit sample data from a buffer~ object

See Also

buffer~ Store audio samples
groove~ Variable-rate looping sample playback
 536

zerox~ Detect zero crossings

537

Input
signal In left inlet: A signal to be analyzed.

set In left inlet: The word set, followed by a floating-point number in the range 0.0-
1.0, sets the volume of the click (impulse) sent out the right outlet. The default
value is 1.0.

Arguments
float Optional. Sets the output volume for the click sent out the right outlet. Volume

values are in the range 0.0-1.0. The default value is 1.0.

Output
signal Out left outlet: A signal whose value corresponds to the number of zero crossings

per signal vector which were detected during the period of the last signal vector.

Out right outlet: A click (impulse) whose volume is set by argument or by the set
message is sent out the right outlet whenever a zero crossing is detected.

Examples

Use zerox~ to count zero-crossings on an input signal

See Also

change~ Report signal direction
edge~ Detect logical signal transitions
spike~ Report zero to non-zero signal transitions

zigzag~ Linked list
function editor
The zigzag~ object is similar to line~. While the line~ object’s stack-based implementation does
not retain information after it has been output, zigzag~ uses a linked list implementation. In addi-
tion to simply remembering the current “line”, the zigzag~ object lets you modify the list by insert-
ing, deleting, or appending points.

Each element in the zigzag~ object’s linked list has a value (y), and a transition time value (delta-
x), which specifies the amount of time over which the transition from one value to another will
occur. When zigzag~ contains a list, this list can be triggered (the starting and ending points can
be set and changed), traversed forwards or backwards at different speeds, and looped. The current
position in the list can be jumped to, and also held.

Input
mode The word mode, followed by a number in the range 0-3, specifies the way that the

zigzag~ object responds to messages and signal values. The modes of operation
are summarized below:

mode 0 is the default mode of operation. When the zigzag~ object receives a bang,
it will jump to the start point (or end point if our direction is negative) and begin
outputting values from there. The time value associated with this jump has its
length defined by the bangdelta message. The default value for bangdelta is 0. If a sig-
nal is connected to the left inlet of the zigzag~ object in this mode, the current
index of the list is determined by the signal; any previously set speed, loopmode,
start, and end messages are ignored.

mode 1 behavior for the zigzag~ object is exactly the same as in mode 0 in terms of
the effect of a bang. In mode 1, signal inputs are handled differently. If a signal is
connected to the left inlet of the zigzag~ object in mode 1, the input signal func-
tions as a trigger signal; when the slope of the input signal changes from non-neg-
ative to negative, the object will be retriggered as though a bang were received.

mode 2 sets the zigzag~ object to jump to the next index in the list (or the previous
index, if the current direction is negative) and begin outputting values from there.
The time value associated with this jump has its length defined by the bangdelta
message. The default value for bangdelta is 0. If a signal is connected to the left inlet
of the zigzag~ object in mode 2, the input signal functions as a trigger signal;
when the slope of the input signal changes from non-negative to negative, the
object will be retriggered as though a bang were received.

bang In left inlet: The zigzag~ object responds to a bang message according to its mode
of behavior, which is set using the mode message.

If the zigzag~ object is set to mode 0 or mode 1, a bang message will cause the zig-
zag~ object to go to the start point (or end point if the direction is negative) and
begin outputting values from there.
 538

zigzag~ Linked list
function editor
If the zigzag~ object is set to mode 2, a bang message will cause the zigzag~ object
to jump to the next index in the list (or the previous index, if the current direction
is negative) and begin outputting values from there.

signal In left inlet: The zigzag~ object responds to signal values according to its mode of
behavior, which is set using the mode message.

If the zigzag~ object is set to mode 0, the current index of the list is determined by
the input signal value; any previously set speed, loopmode, start, and end messages
will be ignored.

If a signal is connected to the left inlet of the zigzag~ object in mode 1, the input
signal functions as a trigger signal; when the slope of the input signal changes
from non-negative to negative, the object will be retriggered as though a bang were
received.

If a signal is connected to the left inlet of the zigzag~ object in mode 2, the input
signal functions as a trigger signal; when the slope of the input signal changes
from non-negative to negative, the object will be retriggered as though a bang were
received.

signal In right inlet: A signal value specifies the rate at which the value and time pairs
will be output. A value of 1.0 traverses the list forward at normal speed. A play-
back rate of -1 traverses the list backwards (i.e. in reverse). A signal value of .5
traverses the linked list at half the normal speed (effectively doubling the delay
time values). The value of the input signal is sampled once per input vector.
Therefore, any periodic frequency modulation with a period which is greater than
the current sample rate/(2*vector_size) will alias.

float In left inlet: Each element in the zigzag~ object’s linked list is a pair that consists of
a target value (y), followed by a second number that specifies a total amount of
time in milliseconds (delta-x). In that amount of time, numbers are output regu-
larly in a line from the current index value to the target value. The list 0 0 3.5 500 10
1000 describes a line which begins with a value of 0 at time 0, rises to a value of 3.5
a half second later, and rises again to a value of 10 in 1 second.

int In left inlet: Converted to float.

int or float In right inlet: Specifies the rate at which the value and time pairs will be output. A
value of 1.0 traverses the list forward at normal speed. A playback rate of -1
traverses the list backwards (i.e. in reverse). A value of .5 traverses the linked list at
half the normal speed (effectively doubling the delay time values).

append In left inlet: The word append, followed by an int which specifies a position (where
0 is the first element) and a list, will insert new event pair(s) after the index speci-
fied. The message append 0 5 500 will create a new second entry in the linked list (at
the 0 index) with a value of 5 and a time of 500 milliseconds.
539

zigzag~ Linked list
function editor
bangdelta In left inlet: The word bangdelta, followed by a float or int, specifies the time over
which the transition between values occurs when the zigzag~ object receives a
bang. The default is 0 (i.e., and immediate transition).

bound In left inlet: The word bound, followed by two numbers which specify start and
end indices (where 0 is the first element), sets the start and end points of the zig-
zag~ object’s linked list.

delete In left inlet: The word delete, followed by an int which specifies a position (where 0
is the first element), will delete the value and time pair associated with that index
from the list. A list can follow the delete message if you want to remove multiple
event pairs from the list. The message delete 0 will remove the current first value
and time pair from the list; the second value and time pair (i.e. the value and time
pair at index 1) will now become the first values in the list.

dump In left inlet: The word dump will cause a list consisting of all currently stored value
and time pairs in the form

index target value delta-x

to be sent out the zigzag~ object’s 3rd outlet.

end In left inlet: The word end, followed by an int which specifies a position (where 0 is
the first element), sets the point at which the zigzag~ object ceases its output when
triggered by a bang.

insert In left inlet: The word insert, followed by an int which specifies a position (where 0
is the first element) and a list, will insert new event pair(s) before the index speci-
fied. The message insert 0 5 500 will create a new first entry in the linked list (at the 0
index) with a value of 5 and a time of 500 milliseconds.

jump In left inlet: The word jump, followed by an int which specifies a position (where 0
is the first element), skips to that point in the linked list and begins outputting
value and time pairs from that point. An optional int can be used to specify the
time, in milliseconds, over which the transition to the next value will occur (the
default value is 0).

jumpend In left inlet: The word jumpend causes the zigzag~ object to immediately jump for-
ward to the last value (y)on the linked list.

jumpstart In left inlet: The word jumpstart causes the zigzag~ object to immediately jump to
the first value (y)on the linked list and then output the currently selected list or
selected portion of the list.

loopmode The word loopmode, followed by 1, turns on looping. loopmode 0 turns off looping.
By default, looping is off. loopmode 2 turns on looping in “pendulum” mode, in
which the value and time pairs are traversed in an alternating forward and reverse
direction. By default, looping is off
 540

zigzag~ Linked list
function editor
next In left inlet: The word next skips to the next value and time pair in the linked list.
An optional int can be used to specify the time over which the transition to the
next value will occur (the default value is 0).

prev In left inlet: The word prev skips to the previous value and time pair in the linked
list. An optional int can be used to specify the time over which the transition to the
previous value will occur (the default value is 0).

print In left inlet: The word print causes the current status and contents of the zigzag~
object to be printed out in the Max window. The output consists of the current
mode, loopmode, the start, end, and loop length of the current list, the pendulum
state, and moving value of the object, followed by a listing of each index in the
linked list, along with its y and delta-x values.

ramptime In left inlet: The word ramptime, followed by a number, sets the ramp time, in mil-
liseconds, at which the output signal will arrive at the target value.

setindex In left inlet: The word setindex, followed by an int which specifies a position (where
0 is the first element) and a pair of floats, sets the target value (y) and transition
time amounts (delta-x) for the specified position in the list.

skip In left inlet: The word skip, followed by a positive or negative number, will skip the
specified number of indices in the zigzag~ object’s linked list. Positive number
values skip forward, and negative values skip backward. An optional int can be
used to specify the time over which the transition to the next or previous value
will occur (the default value is 0).

speed In left inlet: The word speed, followed by a positive or negative floating-point
number, specifies the rate at which the value and time pairs will be output. The
message speed 1.0 traverses the list forward at normal speed, speed -1 traverses the
list backwards, speed.5 traverses the linked list at half the normal speed (effectively
doubling the delay time values).

start In left inlet: The word start, followed by an int which specifies a position (where 0 is
the first element), sets the point at which the zigzag~ object begins its output
when triggered by a bang.

Arguments
int or float Optional. Sets an initial target value (y) for the zigzag~ object.

Output
signal Out 1st outlet: The current target value, or a ramp moving toward the target value

according to the currently stored value and the target time.

Out 2nd outlet: The current delta-x value.
541

zigzag~ Linked list
function editor
list Out 3rd outlet: In response to the dump message, a list consisting of all currently
stored value and time pairs in the form

index target value (y)delta-x

is output.

bang Out right outlet: When looping, a bang message is sent out when the loop (retrig-
ger) point is reached. A bang is also sent out when zigzag~ has finished generating
all of its ramps.

Examples

zigzag~ can be used as a multi-purpose, editable ramp generator

See Also

curve~ Exponential ramp generator
kink~ Distort a sawtooth waveform
line~ Linear ramp generator
 542

The dsp Object
Controlling and Automating MSP

In order to provide low-level control over the MSP environment from within Max, a special object
named dsp has been defined. This object is similar to the object max that can accept messages to
change various options in the Max application environment. Sending a message to the dsp object is
done by placing a semicolon in a message box, followed by dsp and then the message and argu-
ments (if any). An example is shown below.

Turn the audio on or off without a dac~ or adc~ object

You need not connect the message box to anything, although you may want to connect something
to the inlet of the message box to supply a message argument or trigger it from a loadbang to con-
figure MSP signal processing parameters when your patcher file is opened.

Here is a list of messages the dsp object understands:

Message Parameters

; dsp start Start Audio

; dsp stop Stop Audio

; dsp set N N = 1, Start Audio;

N = 0, Stop Audio

; dsp status Open DSP Status Window

; dsp open Open DSP Status Window

; dsp sr N N = New Sampling Rate in Hz

; dsp iovs N N = New I/O Vector Size

; dsp sigvs N N = New Signal Vector Size

; dsp debug N N = 1, Internal debugging on;

N = 0, Internal debugging off

; dsp takeover N N = 1, Scheduler in Audio Interrupt On;

N = 0, Scheduler in Audio Interrupt Off

; dsp wclose Close DSP Status window

; dsp inremap X Y Maps physical device input channel Y to logical input X

; dsp outremap X Y Maps logical output X to physical device output channel Y
543

The dsp Object Controlling and
Automating MSP
; dsp setdriver D S If D is a number starting at 0, a new audio driver is chosen based on its
index into the currently generated menu of driverrs created by the adsta-
tus driver object.

If D is a symbol, a new driver is selected by name (if D names a valid
driver). The second argument S is optional and names the “subdriver.”
For instance, with ASIO drivers, ASIO is the name of the driver and
PCI-324 is an example of a subdriver name.

; dsp timecode N N = 1 or 0 to start/stop timecode reading by the audio driver (only sup-
ported currently by ASIO 2 drivers).

; dsp optimize N N = 1 or 0 to turn Altivec optimization on/off

; dsp cpulimit N Sets a utilization limit for the CPU, above this limit, MSP will not process
audio vectors until the utilization comes back down, causing a click. N is
a number between 0 and 100. If N is 0 or 100, there is no limit checking.

Certain audio drivers can be controlled with the ; dsp driver message. Refer to the Audio Input and
Output section for more information on drivers that support this capability.
 544

Object Thesaurus Objects listed
by task keyword
Absolute value of all samples in a signal ... abs~
Access audio driver output channels.. adoutput~
Accumulator (signal) ...+=~
Adding signals together .. +~
Additive synthesis... +~, cycle~
AIFF saving and playing... buffer~, info~, sfplay~, sfrecord~
Aliasing .. dspstate~
Amplification ... *~, /~, gain~, normalize~
Amplitude indicator... avg~, meter~
Amplitude modulation.. *~
Analog-to-digital converter... adc~, ezadc~
Analysis of a signal .. capture~, fft~, scope~
Arc-cosine function for signals... acos~
Arc-sine function for signals .. asin~
Arc-tangent function for signals ... atan~
Arc-tangent function for signals (two variables)... atan2~
Arithmetic operators for signals acos~, acosh~, asin~, asinh~, atan~, atanh~, atan2~, cos~, cosh~,

cosx~, sinh~, sinx~, tanh~, tanx~
Audio driver output channel access ... adoutput~
Audio driver settings, reporting and controlling ..adstatus
Average signal amplitude ... avg~
Backward sample playback... groove~, play~
Bandpass filter .. noise~, pink~, rand~, reson~
Bit shifting for floating-point signals .. bitshift~
Bitwise “and” of floating-point signals ... bitand~
Bitwise “exclusive or” of floating-point signals .. bitxor~
Bitwise “or” of floating-point signals...bitor~
Bitwise inversion of a floating-point signal ...bitnot~
buffer~ viewer and editor ... waveform~
Buffer-based FIR filter ...buffir~
Bypassing a signal.. gate~, mute~, pass~, selector~
Cartesian to Polar coordinate conversion (signal) ...cartopol~
Chorusing ... cycle~, tapout~
Clipping .. clip~, dac~, normalize~
Comb filter with feedforward and feedback delay control ..teeth~
Comb filter ... comb~
Compare two signals, output the maximum ... maximum~
Compare two signals, output the minimum ..minimum~
Comparing signals ... <~, ==~, >~, change~, meter~, scope~, snapshot~
Compute “running phase” of successive phase deviation frames................................frameaccum~
Compute phase deviation between successive FFT frames ..framedelta~
Compute the minimum and maximum values of a signal.. minmax~
Configure the behavior of a plug-in..plugconfig
Constant signal value ... sig~
Control audio driver settings ...adstatus
Control function ... curve~, function, line~
545

Object Thesaurus Objects listed
by task keyword
Control poly~ voice allocation and muting .. thispoly~
Convert Max messages to signals... curve~, line~, peek~, poke~, sig~
Convert signals to Max messages... avg~, meter~, peek~, snapshot~
Cosine function for signals (0-1 range) .. cos~
Cosine function for signals ... cosx~
Cosine wave ... cos~, cycle~
Create an impulse ..click~
DC offset.. +~, -~, number~, sig~
Define a plug-in parameter...pp
Define a plug-in’s audio inputs..plugin~
Define a plug-in’s audio outputs .. plugout~
Define a time-based plug-in parameter ...pptime
Define multiple plug-in parameters..plugmultiparam
Define plug-in tempo and sync parameters .. pptempo
Delay .. allpass~, comb~, delay~, tapin~, tapout~
Difference between samples.. change~, delta~
Difference between signals .. -~, scope~
Digital-to-analog converter... dac~, ezdac~
Disabling part of a signal network ... gate~, mute~, pass~, selector~
Display signal value .. capture~, meter~, number~, scope~, snapshot~
Divide two signals, output the remainder ... %~
Downsampling... avg~, number~, sah~, snapshot~
Duty cycle of a pulse wave .. <~, >~, train~
Editing an audio sample ... record~, peek~, poke~
Envelope follower, vector-based...vectral~
Envelope following .. adc~, ezadc~, function, line~
Envelope generator.. curve~, function, line~
Equalization ... allpass~, biquad~, comb~, lores~, reson~
Exponential curve function.. curve~, gain~, linedrive, pow~
Fast fixed filter bank ...fffb~
Feedback delayed signal allpass~, biquad~, comb~, lores~, reson~, tapin~, tapout~
Filter a signal logarithmically.. slide~
Filter................................... allpass~, biquad~, buffir~, comb~, lores~, noise~, pink~, reson~, vst~
FIR filter, buffer-based...buffir~
Flanging .. cycle~, tapout~
Fourier analysis and synthesis .. fft~, ifft~
Frequency modulation ... +~, cycle~, phasor~
Frequency-to-pitch conversion .. ftom
Function generator ... curve~, function, line~, peek~, poke~
Generate parameter values from programs.. plugmorph
Global signal values ... receive~, send~
Graphical filter editor .. filtergraph~
Hertz equivalent of a MIDI key number .. ftom, mtof
Host ReWire devices ..rewire~
Host-synchronized sawtooth wave... plugphasor~
Hyperbolic arc-cosine function for signals ... acosh~
 546

Object Thesaurus Objects listed
by task keyword
Hyperbolic arc-sine function for signals... asinh~
Hyperbolic arc-tangent function for signals ... atanh~
Hyperbolic cosine function for signals ... cosh~
Hyperbolic sine function for signals ... sinh~
Hyperbolic tangent function for signals .. tanh~
IIR filter.. allpass~, biquad~, comb~, lores~, reson~
Impulse generator ...click~
Input for a patcher loaded by pfft~ ... fftin~
Input for a patcher loaded by poly~ (message) ...in
Input for a patcher loaded by poly~ (signal).. in~
Input received in audio input jack.. adc~, ezadc~
Interpolating oscillator bank .. ioscbank~
Inverting signals .. *~, -~
Is greater than or equal to, comparison of two signals ...>=~
Is less than or equal to, comparison of two signals ..<=~
Level control... *~, /~, gain~, normalize~
Level meter ... meter~, number~
Limit changes in signal amplitude .. deltaclip~
Limiter .. clip~, lookup~
Linked list function editor ..zigzag~
Logarithmic curve function.. curve~, gain~, linedrive, log~, pow~, sqrt~
Logical operations using signal values .. <~, ==~, >~, edge~
Lookup table .. buffer~, cycle~, function, index~, lookup~, peek~, wave~
Loop points in a sound file .. info~
Looping a sample ... 2d.wave~, groove~, info~, wave~
Lowpass filter .. lores~, noise~, pink~, rand~
Max messages converted to signals ... curve~, line~, peek~, poke~, sig~
Max messages derived from signals avg~, edge~, meter~, number~, peek~, snapshot~
Message input for a patcher loaded by poly~ ..in
Message output for a patcher loaded by poly~..out
MIDI control from MSP.. avg~, ftom, function, number~, snapshot~
MIDI control of MSP ... curve~, line~, mtof, sig~
Millisecond calculations.. mstosamps~, sampstoms~
Mixing signals .. +~
Modify plug-in parameter values ... plugmod
Multi-mode signal average .. average~
Multiple plug-in parameter definition ..plugmultiparam
Multiplying signals .. *~
Noise gate ... gate~
Noise ... noise~, pink~, rand~
Non-interpolating oscillator bank ... oscbank~
Normalization.. *~, /~, normalize~
Not equal to, comparison of two signals ...!=~
Numerical display of a signal .. capture~, number~, snapshot~
On/off audio switch ... adc~, dac~, dspstate~, ezadc~, ezdac~
Oscillator bank... ioscbank~, oscbank~
547

Object Thesaurus Objects listed
by task keyword
Oscillator .. 2d.wave~, cycle~, phasor~, wave~
Oscilloscope... scope~
Output audio jack.. dac~, ezdac~
Output for a patcher loaded by pfft~ .. fftout~
Output for a patcher loaded by poly~ (message) ..out
Peak amplitude... meter~
Periodic waves ... 2d.wave~, cycle~, phasor~, wave~
Phase distortion synthesis .. kink~, phasor~
Phase modulation .. phasor~
Phase shifter ...phaseshift~
Pink noise generator..pink~
Pitch bend ... ftom, mtof
Pitch-to-frequency conversion .. mtof
Playing audio... dac~, ezdac~
Playing samples 2d.wave~, buffer~, groove~, index~, play~, sfplay~, wave~
Plug-in audio inputs definition...plugin~
Plug-in audio outputs definition ... plugout~
Plug-in development tools.....plugconfig, plugin~, plugmod, plugmorph, plugmultiparam, plugout~,

plugphasor~, plugreceive~, plugsend~,
plugstore, plugsync~, pp, pptempo, pptime

Plug-in in VST format used in MSP ... vst~
Plug-in parameter definition ..pp
Plug-in tempo and sync parameters definition ... pptempo
Polar to Cartesian coordinate conversion (signal) ...poltocar~
Polyphony management.. in, in~, out, out~, poly~, thispoly~
Polyphony/DSP manager for patchers...poly~
Pulse wave .. <~, >~, clip~, train~
Ramp signal .. curve~, line~
Random signal values.. noise~, pink~, rand~
Receive audio from another plug-in ... plugreceive~
Recording audio samples.. adc~, ezadc~, poke~, record~, sfrecord~
Remainder (signal)... %~
Repetition at sub-audio rates .. cycle~, phasor~, train~
Report and control audio driver settings..adstatus
Report host synchronization information .. plugsync~
Report information about for a patcher loaded by pfft~ .. fftinfo~
Report intervals of zero to non-zero transitions .. spike~
Report milliseconds of audio processed .. dsptime~
Resonant filter .. allpass~, biquad~, comb~, lores~, reson~
Reverberation... allpass~, comb~, tapin~, tapout~
Reversed sample playback .. groove~, play~
ReWire device hosting..rewire~
Ring modulation ... *~
Sample and hold.. sah~
Sample index in a buffer ... count~, index~
Sample playback.................................. 2d.wave~, buffer~, groove~, index~, play~, sfplay~, wave~
 548

Object Thesaurus Objects listed
by task keyword
Sample storage ... buffer~, record~, sfrecord~
Sampling rate adc~, buffer~, count~, dac~, dspstate~, mstosamps~, sampstoms~
Sawtooth oscillator... phasor~
See the maximum amplitude of a signal .. peakamp~
Send audio to another plug-in ..plugsend~
Signal accumulator (signal) .. +=~
Signal arithmetic operators....... acos~, acosh~, asin~, asinh~, atan~, atanh~, atan2~, cos~, cosh~,

cosx~, sinh~, sinx~, tanh~, tanx~
Signal capture and granular oscillator..stutter~
Signal comparison, output the maximum... maximum~
Signal comparison, output the minimum ..minimum~
Signal division (inlets reversed)...!/~
Signal folding, variable range..pong~
Signal input for a patcher loaded by poly~ .. in~
Signal mixing matrix ... matrix~
Signal output for a patcher loaded by poly~ .. out~
Signal quality reducer ..degrade~
Signal remainder .. %~
Signal routing matrix... matrix~
Signal subtraction (inlets reversed) ...!-~
Signal tangent function (signal) ... tanx~
Sine function for signals ... sinx~
Sine wave.. cos~, cycle~
Single-pole lowpass filter ... onepole~
Smooth an incoming signal ... rampsmooth~
Soft-clipping signal distortion... overdrive~
Sound Designer II saving and playing (Macintosh only) buffer~, info~, sfplay~, sfrecord~
Spectral domain processing. cartopol~, fftin~, fftinfo~, fftout~, frameaccum~, framedelta~, pfft~,

phasewrap~, poltocar~, vectral~
Spectral-processing manager for patchers ... pfft~
Spectrum measurement ... fft~, ifft~
Start and end point of a sample 2d.wave~, groove~, index~, play~, wave~
State-variable filter with simultaneous outputs ..svf~
Store multiple plug-in parameter values ...plugstore
Subpatch control ... mute~, receive~, send~
Subtractive synthesis allpass~, biquad~, comb~, lores~, noise~, pink~, rand~, reson~
Switching signal flow on and off .. gate~, mute~, pass~, selector~
Table lookup... buffer~, cycle~, function, index~, lookup~, peek~, wave~
Tangent function for signals ... tanx~
Text file of signal samples... capture~
Time-based plug-in parameter definition..pptime
Transfer function... cycle~, lookup~
Transient detector.. zerox~
Trapezoidal wavetable ... trapezoid~
Triangle/ramp wavetable ... triangle~
Triggering a Max message with an audio signal ... edge~, thresh~
549

Object Thesaurus Objects listed
by task keyword
Trigonometric operators for signals acos~, acosh~, asin~, asinh~, atan~, atanh~, atan2~, cos~,
cosh~, cosx~, sinh~, sinx~, tanh~, tanx~

Truncate the fractional part of a signal... trunc~
Two-dimensional wavetable ..2d.wave~
Variable range signal folding...pong~
Varispeed sample playback... groove~, play~
Vector size ... adc~, dac~, dspstate~
Vector-based envelope follower ...vectral~
Velocity (MIDI) control of a signal.. curve~, gain~, line~, sig~
View a signal... buffer~, capture~, number~, scope~, snapshot~
Waveshaping .. lookup~
Wavetable synthesis ... ,2d.wave~ buffer~, cycle~, wave~
Wavetables .. trapezoid~, triangle~
White noise ... noise~
Windowing a portion of a signal .. index~, cycle~, gate~, lookup~, wave~
Wrap a signal between -π and π...phasewrap~
Zero-cross counter .. zerox~
 550

Index

Symbols
 220, 221
!/~ 210
!=~ 211
!-~ 209
%~ 213
*~ 48, 214
+=~ 217
+~ 216
/~ 218
==~ 222
>=~ 225
>~ 224
-~ 215

Numerics
2d.wave~ 226

A
abs~ 229
absolute value 229
absorption of sound waves 192
access the hard disk 117
acos~ 230
adc~ 104, 232
adding signals together 56, 216
Additive synthesis 81
additive synthesis 20, 81
Adjustable oscillator 48
adoutput~ 234
adstatus 235
AIFF 265
aliasing 16, 69, 205
allpass~ 241
amplification 214, 333, 374
amplitude 9, 157
amplitude adjustment 48
amplitude envelope 13, 78, 82, 121, 352
Amplitude modulation 89
amplitude modulation 85, 89, 161
analog-to-digital conversion 15, 104, 232,
302
ASCII 119
asin~ 243, 244
ASIO 29
ASIO drivers, controlling with messages 40

atan~ 245
atan2~ 247
atanh~ 246
AtodB subpatch 63
attack, velocity control of 133
audio driver selection 29
audio driver settings override 30
audio input 232, 302
audio output 292, 304
audio processing off for some objects 70, 251,
336, 467
audio sampling rate, setting 30
average~ 249
avg~ 250

B
balance between stereo channels 150
band-limited noise 450
band-limited pulse 205
bandpass filter 456, 500
beats 60, 164
begin~ 70, 251
bell-like tone 83
biquad~ 252
bitand~ 254
bitnot~ 256
bitor~ 258
bitshift~ 260
bitwise and 254, 256
bitwise operators

& 254
bitnot~ 256

bitwise or 258, 260, 262
bitxor~ 262
bold type, displaying numbers in 377
buffer~ 53, 105, 264
buffir~ 269

C
capture~ 162, 271
carrier oscillator 86
cartopol~ 273
change~ 275
Chorus 200
chorus 200
click~ 276
551

Index

client, ReWire 458
clip~ 277
clipping 19, 48
clock source for audio hardware 30, 40
Comb filter 203
comb filter 191, 203, 278, 316, 507
comb~ 203, 278
comparing signal values 211, 220, 221, 222,
224, 225, 364, 368, 511
complex tone 10, 81
composite instrument sound 57
control rate 23
convolution 85
cos~ 280
cosh~ 231, 282
cosine wave 44, 280, 284, 290
cosx~ 284
count~ 106, 286
CPU limit option 33
CPU utilization indicator 30
critical band 87
crossfade 57

constant intensity 153
linear 152
speaker-to-speaker 154

Csound 6
cue sample for playback 118
current file for playback 118
curve~ 288
cycle~ 44, 290

D
dac~ 292
dBtoA subpatch 127
DC offset 90, 215, 216, 375, 487
decibels 14, 62, 127, 334
default values 51
degrade~ 294
delay 189, 295
Delay line 189
delay line 295, 504, 505
delay line with feedback 193, 201, 203
Delay lines with feedback 192
delay time modulation 198
delay~ 295
delta~ 296, 326

deltaclip~ 297
difference frequency 60, 87, 164
digital audio overview 8
digital-to-analog converter 15, 44, 292, 304
diminuendo 79
disable audio of a subpatch 73
disk, soundfiles on 117
display signal 464
display signal amplitude 361, 365, 493
display signal as text 271
display signal graphically 163
display the value of a signal 157, 375
divide one signal by another 210, 218
Dodge, Charles 176
Doppler effect 197
downsamp~ 298
DSP Status window 28
dspstate~ 163, 299
dsptime~ 300
duty cycle 512

E
echo 189
edge~ 301
envelope 55
envelope generator 82, 249, 269, 294, 328,
348, 352, 369, 381, 388, 394, 396, 429, 434,
449, 451, 491, 497, 519, 528, 538
equal to comparison 211, 222
equalization 241, 252, 278, 316, 359, 379,
456, 500, 507
exponent in a power function 124
exponential curve 127, 128, 134, 288, 334,
354
ezadc~ 104, 302
ezdac~ 53, 304

F
fade volume in or out 51
feedback in a delay line 193, 201, 203
fffb~ 306
fft~ 166, 308
fftin~ 310
fftinfo~ 312
fftout~ 314
file search path of Max 265, 473, 475, 479
 552

Index

file, record AIFF 117, 485
filter

allpass 241
comb 278, 316, 507
lowpass 359
resonant bandpass 456, 500
two-pole two-zero 252, 379

filtergraph~ 316
Flange 196
flange 278, 316, 507
flanging 198
float-to-signal conversion 375, 487
FM 93, 95
foldover 16, 69, 205
Fourier synthesis 340
Fourier transform 12, 166, 308
frameaccum~ 325
framedelta~ 326
Freqeuency modulation 95
frequency 9, 45
frequency domain 85, 166
frequency modulation 93, 95
frequency-to-MIDI conversion 327
ftom 327
function 328
function object 82

G
G4 vector optimization 33
gain~ 206, 333
gate~ 60, 336
greater than comparison 224, 225, 364
groove~ 109, 121, 137, 338

H
hard disk, soundfiles on 117
harmonically related sinusoids 11, 74
harmonicity ratio 95
hertz 9

I
I/O mappings in MSP 32
ifft~ 167, 340
in 342
in~ 343
index~ 106, 344

info~ 110, 346
input 232, 302
input source 104
interference between waves 60, 164
interpolation 45, 54, 107, 160, 290, 332,
352, 375
inverse fast Fourier transform 167, 340
ioscbank~ 348

J
Jerse, Thomas 176

K
key region 137
kink~ 350

L
LED display 157
less than comparison 220, 221, 368
level meter 361, 365
level of a signal 48
LFO 128
limiting amplitude of a signal 277, 297, 374
line segment function 54
line~ 49, 352
linear crossfade 152
linear mapping 126
linedrive 354
localization 150
log~ 356
logarithmic curve 288, 334, 354, 356
logarithmic scale 14, 62
logical I/O channels 32, 33
logical signal transitions 301
lookup table 99, 114, 357, 389
lookup~ 99, 357
loop an audio sample 109, 338
lores~ 359
loudness 14, 127
low-frequency oscillator 128
lowpass filter 359
lowpass filtered noise 450

M
map subpatch 127
mapping a range of numbers 126
553

Index

Mapping MIDI to MSP 125
masking 254, 256
matrix~ 361
Max messages 46
maximum~ 364
meter~ 157, 365
metronome 512
MIDI 6, 125, 130
MIDI note value 327
MIDI panning 150
MIDI-to-amplitude conversion 198, 205,
333
MIDI-to-frequency conversion 132, 371
millisecond scheduler of Max 23, 43
minimum~ 368
minmax~ 369
mixer, ReWire 458
mixing 56
mixing signals 216
modulation

amplitude 89
delay time 198
frequency 93, 95
ring 85

modulation index 95
modulation wheel 126, 130
modulator 86
modulo 213
MP3 file conversion for buffer~ 264
MPG3 file conversion for buffer~ 264
MSP audio I/O overview 28
MSP overview 22
mstosamps~ 370
mtof 132, 371
multiply one signal by another 85, 214
mute audio of a subpatch 72, 372, 387
mute~ 72, 372

N
noise 13, 56, 201, 450
noise~ 56, 373
non real-time mode 29
non-real time and MSP 41
normalize~ 194, 374
number~ 157, 375
number-to-signal conversion 375, 487

Nyquist rate 16, 69, 114, 205

O
on and off, turning audio 232, 292, 302, 304
onepole~ 379
open and close a subpatch window 509
oscbank~ 381
oscillator 45, 290
Oscilloscope 163
oscilloscope 163, 464
out 383
out~ 385
output 292, 304
overdrive, turning off and on 32
overdrive~ 386

P
Panning 150
panning 150
partial 11, 81
pass~ 387
Patcher, audio on in one 68
pcontrol to mute a subpatch 73
peak amplitude 9, 160, 194, 361, 365
peakamp~ 388
peek~ 389
period of a wave 9
pfft~ 391
phase distortion synthesis 350
phase modulation 350, 397
phase offset 64
phaseshift~ 394
phasewrap~ 396
phasor~ 55, 397
pink noise 398
pink~ 398
pitch bend 128, 130
pitch-to-frequency conversion 122, 128, 371
play audio sample 106, 109, 234, 338, 344,
399
play audio sample as waveform 226, 525
play~ 107, 399
Playback with loops 109
plugconfig 401
plugin~ 408
plugmidiin 409
 554

Index

plugmidiout 410
plugmod 411
plugmorph 413
plugmultiparam 416
plugout~ 418
plugphasor~ 419
plugreceive~ 420
plugsend~ 421
plugstore 422
plugsync~ 423
poke~ 425
poltocar~ 427
poly~ 143, 429
polyphony 130, 137, 143
pong~ 434
pow~ 124, 436
PowerPC 25
pp 437
pp, color messages 438, 447
pp, hidden 438, 447
pp, text 437
pptempo 441
pptime 445
precision of floating point numbers 77
prioritize MIDI I/O over audio I/O 30
pulse train 512
pulse width 512

Q
Q of a filter 359, 456, 500
QuickTime 264
QuickTime file conversion for buffer~ 264

R
RAM 117
rampsmooth~ 449
rand~ 200, 450
random signal 56, 373, 450
rate~ 451
receive~ 59, 453
Record and play sound files 117
record audio 105, 454
record Sound Designer II 485
record soundfile 117, 485
record~ 105, 454
Recording and playback 104

reflection of sound waves 192
remainder 213
reson~ 456
resonance of a filter 359, 456, 500
Review 76, 121
ReWire 458
rewire~ 458
ring modulation 85
Roads, Curtis 8, 176
round~ 461
routing a signal 336
Routing signals 59
routing signals 60

S
sah~ 462
sample and hold 15, 462
sample number 286
sample stored in memory 264
sample, read single 234, 344, 389
sample, write single 389, 425
Sampler 137
sampler 137
sample-to-millisecond conversion 463
sampling rate 15, 23, 299

of AIFF file 140, 346
sampstoms~ 463
save a sound file 106
sawtooth wave 56, 69, 397
scheduler in audio interrupt 32
scope~ 163, 464
search path 265, 473, 475, 479
selector~ 68, 467
semitone 122
send~ 59, 469
seq 470
sfinfo~ 473
sflist~ 475
sfplay~ 478
sfrecord~ 485
sidebands 87, 91, 95
sig~ 64, 487
signal network 6, 22, 43
signal of constant value 375, 487
Signal vector size 31
signal vector size 31
555

Index

signal-to-float conversion 375, 493
simple harmonic motion 9
sine wave 9, 64, 290
sinh~ 488
sinx~ 490
slapback echo 189
slide~ 491
snapshot~ 161, 493
sound 8, 346
sound input 104, 232, 302
Sound Manager and MSP 36
sound output 292, 304
spectrum 11, 85, 167
spike~ 494
sqrt~ 496
square root of signal value 496
stutter~ 497
subpatch

opening the window of 509
subpatch, mute audio of 72, 372
sustain 328
svf~ 500
switch 68, 467
synthesis techniques 81
synthesis, additive 81
Synthesizer 130

T
tanh~ 502
tanx~ 503
tapin~ 189, 504
tapout~ 189, 505
teeth~ 507
temperament, equal 371
Test tone 43
text, viewing a signal as 271
thispoly~ 509
thresh~ 511
threshold detection 511
timbre 11
train~ 512
transfer function 99, 357
trapezoid~ 514
tremolo 86, 91, 161
Tremolo and ring modulation 85
triangle~ 516

trunc~ 518
tuning, equal temperament 371
turning audio off and on 29
Turning signals on and off 68

U
Using the FFT 166

V
variable speed sample playback 107, 109,
338, 399
Variable-length wavetable 112
vector size 299
vectral~ 519
velocity sensitivity 130, 205
velocity-to-amplitude conversion 333
vibrato 86, 93, 122, 128
Vibrato and FM 93
Viewing signal data 157
vst~ 521

W
wave~ 112, 525
waveform~ 528
Waveshaping 99
waveshaping synthesis 99, 116
Wavetable oscillator 53
wavetable synthesis 44, 53, 112, 226, 290,
525
white noise 13, 56, 373
windowing 169

Z
zerox~ 537
zigzag~ 538
 556

	Copyright and Trademark Notices
	Credits
	Introduction
	Signal processing in Max
	How To Use This Manual
	Reading the manual online
	Other Resources for MSP Users

	Digital Audio How Digital Audio Works
	Sound
	Simple harmonic motion
	Complex tones
	Harmonic tones
	Inharmonic tones and noise
	Amplitude envelope
	Amplitude and loudness
	Summary

	Digital representation of sound
	Sampling and quantizing a sound wave

	Limitations of digital audio
	Sampling rate and Nyquist rate
	Precision of quantization
	Memory and storage
	Clipping

	Advantages of digital audio
	Synthesizing digital audio
	Manipulating digital signals

	How MSP Works Max Patches and the MSP Signal Network
	Introduction
	Audio rate and control rate
	The link between Max and MSP
	Limitations of MSP
	Advantages of MSP

	Audio I/O Audio input and output with MSP
	The DSP Status Window
	About Logical Input and Output Channels
	Using Core Audio on Macintosh
	Using MME Audio and DirectSound on Windows
	Using MME and DirectSound Drivers on with MSP on Windows

	Using ASIO on Windows
	Controlling ASIO Drivers with Messages to the dsp Object on Windows
	Working in Non-Real Time with MSP

	Tutorial 1 Fundamentals: Test tone
	MSP objects are pretty much like Max objects
	...but they’re a little different
	...so they look a little different
	Digital-to-analog converter: dac~
	Wavetable synthesis: cycle~
	Starting and stopping signal processing
	Listening to the Test Tone
	Troubleshooting

	Tutorial 2 Fundamentals: Adjustable oscillator
	Amplifier: *~
	Line segment generator: line~
	Adjustable oscillator
	Fade In and Fade Out

	Tutorial 3 Fundamentals: Wavetable oscillator
	Audio on/off switch: ezdac~
	A stored sound: buffer~
	Create a breakpoint line segment function with line~
	Other signal generators: phasor~ and noise~
	Add signals to produce a composite sound
	See Also

	Tutorial 4 Fundamentals: Routing signals
	Remote signal connections: send~ and receive~
	Routing a signal: gate~
	Wave interference
	Amplitude and relative amplitude
	Constant signal value: sig~
	Changing the phase of a waveform
	Receiving a different signal

	Tutorial 5 Fundamentals: Turning signals on and off
	Turning audio on and off selectively
	Selecting one of several signals: selector~
	Turning off part of a signal network: begin~
	Disabling audio in a Patcher: mute~ and pcontrol

	Tutorial 6 Fundamentals: Review
	Exercises in the fundamentals of MSP
	Exercise 1
	Exercise 2
	Exercise 3
	Solution to Exercise 1

	Solution to Exercise 2
	Solution to Exercise 3

	Tutorial 7 Synthesis: Additive synthesis
	Combining tones
	Envelope generator: function
	A variety of complex tones
	Experiment with complex tones

	Tutorial 8 Synthesis: Tremolo and ring modulation
	Multiplying signals
	Tremolo
	Sidebands

	Tutorial 9 Synthesis: Amplitude modulation
	Ring modulation and amplitude modulation
	Implementing AM in MSP
	Achieving different AM effects

	Tutorial 10 Synthesis: Vibrato and FM
	Basic FM in MSP

	Tutorial 11 Synthesis: Frequency modulation
	Elements of FM synthesis
	An FM subpatch: simpleFM~
	Producing different FM tones

	Tutorial 12 Synthesis: Waveshaping
	Using a stored wavetable
	Table lookup: lookup~
	Varying timbre with waveshaping
	See Also

	Tutorial 13 Sampling: Recording and playback
	Sound input: adc~
	Recording a sound: record~
	Reading through a buffer~: index~
	Variable speed playback: play~
	See Also

	Tutorial 14 Sampling: Playback with loops
	Playing samples with groove~
	See Also

	Tutorial 15 Sampling: Variable-length wavetable
	Use any part of a buffer~ as a wavetable: wave~
	Synthesis with a segment of sampled sound
	Using wave~ as a transfer function
	Play the segment as a note
	Changing the wavetable dynamically
	See Also

	Tutorial 16 Sampling: Record and play audio files
	Playing from memory vs. playing from disk
	Record audio files: sfrecord~
	Play audio files: sfplay~
	Play excerpts on cue
	Try different file excerpts
	Trigger an event at the end of a file

	Tutorial 17 Sampling: Review
	A sampling exercise
	Hints
	Solution

	Tutorial 18 MIDI control: Mapping MIDI to MSP
	MIDI range vs. MSP range
	Controlling synthesis parameters with MIDI
	Linear mapping
	Mapping MIDI to amplitude
	Mapping MIDI to frequency
	Mapping MIDI to modulation index
	Mapping MIDI to vibrato

	Tutorial 19 MIDI control: Synthesizer
	Implementing standard MIDI messages
	Polyphony
	Pitch bend
	Mod wheel
	The FM synthesizer
	MIDI-to-frequency conversion
	Velocity control of amplitude envelope
	MIDI control of timbre
	See Also

	Tutorial 20 MIDI control: Sampler
	Basic sampler features
	Playing a sample: the samplervoice~ subpatch
	MSP sample rate vs. audio file sample rate
	Playing samples with MIDI
	See Also

	Tutorial 21 MIDI control: Using the poly~ object
	A different approach to polyphony
	The poly~ object
	See Also

	Tutorial 22 MIDI control: Panning
	Panning for localization and distance effects
	Patch for testing panning methods
	Linear crossfade
	Equal distance crossfade
	Speaker-to-speaker crossfade
	See Also

	Tutorial 23 Analysis: Viewing signal data
	Display the value of a signal: number~
	Interpolation with number~
	Peak amplitude: meter~
	Use a signal to generate Max messages: snapshot~
	Amplitude modulation
	View a signal excerpt: capture~

	Tutorial 24 Analysis: Oscilloscope
	Graph of a signal over time
	A patch to view different waveforms

	Tutorial 25 Analysis: Using the FFT
	Fourier’s theorem
	Spectrum of a signal: fft~
	Practical problems of the FFT
	Overlapping FFTs
	Signal processing using the FFT

	Tutorial 26 Frequency Domain Signal Processing with pfft~
	Working in the Frequency Domain
	See Also

	Tutorial 27 Processing: Delay lines
	Effects achieved with delayed signals
	Creating a delay line: tapin~ and tapout~
	A patch for mixing original and delayed signals
	See Also

	Tutorial 28 Processing: Delay lines with feedback
	Delay emulates reflection
	Delaying the delayed signal
	Controlling amplitude: normalize~

	Tutorial 29 Processing: Flange
	Variable delay time
	Flanging: Modulating the delay time
	Stereo flange with feedback

	Tutorial 30 Processing: Chorus
	The chorus effect
	Low-frequency noise: rand~
	Multiple delays for improved chorus effect

	Tutorial 31 Processing: Comb filter
	Comb filter: comb~
	Trying out the comb filter
	Band-limited pulse
	Velocity-to-amplitude conversion: gain~
	Varying parameters to the filter

	MSP Reference
	Manual Conventions

	!-~
	!/~
	!=~
	%~
	*~
	-~
	+~
	+=~
	/~
	<~
	<=~
	==~
	>~
	>=~
	2d.wave~
	abs~
	acos~
	acosh~
	adc~
	adoutput~
	adstatus
	allpass~
	asin~
	asinh~
	atan~
	atanh~
	atan2~
	average~
	avg~
	begin~
	biquad~
	bitand~
	bitnot~
	bitor~
	bitshift~
	bitxor~
	buffer~
	buffir~
	capture~
	cartopol~
	change~
	click~
	clip~
	comb~
	cos~
	cosh~
	cosx~
	count~
	curve~
	cycle~
	dac~
	degrade~
	delay~
	delta~
	deltaclip~
	downsamp~
	dspstate~
	dsptime~
	edge~
	ezadc~
	ezdac~
	fffb~
	fft~
	fftin~
	fftinfo~
	fftout~
	filtergraph~
	frameaccum~
	framedelta~
	ftom
	function
	gain~
	gate~
	groove~
	ifft~
	in
	in~
	index~
	info~
	ioscbank~
	kink~
	line~
	linedrive
	log~
	lookup~
	lores~
	matrix~
	maximum~
	meter~
	minimum~
	minmax~
	mstosamps~
	mtof
	mute~
	noise~
	normalize~
	number~
	onepole~
	oscbank~
	out
	out~
	overdrive~
	pass~
	peakamp~
	peek~
	pfft~
	phaseshift~
	phasewrap~
	phasor~
	pink~
	play~
	plugconfig
	plugin~
	plugmidiin
	plugmidiout
	plugmod
	plugmorph
	plugmultiparam
	plugout~
	plugphasor~
	plugreceive~
	plugsend~
	plugstore
	plugsync~
	poke~
	poltocar~
	poly~
	pong~
	pow~
	pp
	pptempo
	pptime
	rampsmooth~
	rand~
	rate~
	receive~
	record~
	reson~
	rewire~
	round~
	sah~
	sampstoms~
	scope~
	selector~
	send~
	seq~
	sfinfo~
	sflist~
	sfplay~
	sfrecord~
	sig~
	sinh~
	sinx~
	slide~
	snapshot~
	spike~
	sqrt~
	stutter~
	svf~
	tanh~
	tanx~
	tapin~
	tapout~
	teeth~
	thispoly~
	thresh~
	train~
	trapezoid~
	triangle~
	trunc~
	vectral~
	vst~
	wave~
	waveform~
	zerox~
	zigzag~
	The dsp Object Controlling and Automating MSP
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Object Thesaurus
	Index
	DIpage.pdf
	Digital Audio How Digital Audio Works
	Sound
	Simple harmonic motion
	Complex tones
	Harmonic tones
	Inharmonic tones and noise
	Amplitude envelope
	Amplitude and loudness
	Summary

	Digital representation of sound
	Sampling and quantizing a sound wave

	Limitations of digital audio
	Sampling rate and Nyquist rate
	Precision of quantization
	Memory and storage
	Clipping

	Advantages of digital audio
	Synthesizing digital audio
	Manipulating digital signals

